Multivector and SIMD Computers

Problem 8.17 Consider the use of a multivector
multiprocessor system for computing the following
linear combination of n vectors:

1023

y= Eajxx}-
j=0
- T -
where ¥ = (yo. y1 ---» Yio23)' and X = (xg; Xy;

xm;.,-)r for 0 < j < 1023 are column vectors;
{aj0 < j < 1023} are scalar constants. You are
asked to implement the above computations on a
four-processor system with shared memory. Each
processor is equipped with a vector-add pipeline
and a vector-multiply pipeline. Assume four pipefine
stages in each functional pipeline.

. 407

(a) Design a minimum-time parallel algorithm to
perform concurrent vector operations on the
given multiprocessor, ignoring all memory-
access and | /O operations.

(b) Compare the performance of the multipro-
cessor algorithm with that of a sequential al-
gorithm on a uniprocessor without the pipe-
lined vector hardware.

Problem 8.18 The Burroughs Scientific Processor
(BSP) was built as an SIMD computer consisting of
16 PEs accessing 17 shared memory modules. Prove
that conflict-free memory access can be achieved
on the BSP for vectors of an arbitrary length with a
stride which is not a multiple of 17.

T

Scalable, Multithreaded, and
Dataflow Architectures

This chapter discusses innovative computers built with scalable, multithreaded, or dataflow architectures.
These architectures generated and validated many research ideas which led to the latter development of
massively parallel processing (MPP) systems. Therefore, the material is presented with a strong research
flavor benefiting mostly researchers, designers, and graduate students. More recent developments of
these ideas are presented in Chapter 13.

Major research issues covered include latency-hiding techniques, principles of multithreading,
multidimensional scalability, multithreaded architectures, fine-grain multicomputers, dataflow, and hybrid
architectures. Example systems studied include the Stanford Dash,Wisconsin Multicube, USC/OMP, KSR-
1,Tera, MIT Alewife and |-Machine, Caltech Mosaic C, ETL EM-4, and MIT/Motorola *T.

LATENCY-HIDING TECHNIQUES

Massively parallel and scalable systems may typicaily use distributed shared memory. The
access of remote memory significantly increases memory latency. Furthermore, the processor
speed has been increasing at a much faster rate than memory speeds. Thus any scalable multiprocessor or
large-scale multicomputer must rely on the use of latency-reducing, -tolerating, or -hiding mechanisms. Four
latency-hiding mechanisms are studied below for enhancing scalability and programmability.

Latency hiding can be accomplished through four complementary approaches: (i) using prfetching
techniques which bring instructions or data close to the processor before they are actually needed; (ii) using
coherent caches supported by hardware to reduce cache misses; (iii) using relaxed memory consistency
models by allowing buffering and pipelining of memory references; and (iv) using multiple-contexts support
to allow a processor to switch from one context to another when a long-latency operation is encountered.

The first three mechanisms are described in this section, supported by simulation results obtained by
Stanford researchers. Multiple contexts will be treated with multithreaded processors and system architectures
in Sections 9.2 and 9.4. However, the effect of multiple contexts is shown here in combination with other
latency-hiding mechanisms.

9.14.1 SharedVirtual Memory

Single-address-space multiprocessors/multicomputers must use shared virtual memory. We present a model
of such an architectural environment based on the Stanford Dash experience. Then we examine several
shared-virtual-memory systems developed at Stanford, Yale, Carnegie-Mellon, and Princeton universities,

- 409

Scalable, Muhtithreaded, and Datafiow Architectures

The Architecture Environment The Dash architecture was a large-scale, cache-coherent, NUMA
multiprocessor system, as depicted in Fig. 9.1. It consisted of multiple multiprocessor clusters connected
through a scalable, low-latency interconnection network. Physical memory was distributed among the
processing nodes in various clusters. The distributed memory formed a global address space.

1 1
1 1
])
] t
1 I
1 1
' Primary '
' Cache |
1 1
1 1
1 1
' Loads Stores)
I
Write !
! Buffer
] ‘]
:
i
1
3
|

Cluster 1 \ ! Clustern
\“ ,':,
Processor Processor ' |Processor ;| Processor
ess Directory ; % ses Directory
Cache Cache (‘ memory Y| Cache b Cache I‘ memory
L Remote e _ Remote
Memory Access [Access [
Cache Cache

interconnection Network

Fig.9.1 A scalable coherent cache multiprocessor with distributed shared memory modeled after the
Stanford Dash (Courtesy of Anoop Gupta et af, Proc. 1991 Ann. Int. Symp. Computer Arch.)

Cache coherence was maintained using an invalidating, distributed directory-based protocol (Section
7.2.3). For each memory block, the directory kept track of remote nodes cacheing it. When a write occurred,
point-to-point messages were sent to invalidate remote copies of the block. Acknowledgment messages were
used 1o inform the originating node when an invalidation was completed.

Two levels of local cache were used per processing node. Loads and writes were separated with the use
of write buffers for implementing weaker memory consistency models. The main memeory was shared by all
processing nodes in the same cluster. To facilitate prefetching and the directory-based coherence protocol,
directory memery and remote-access caches were used for each cluster. The remote-access cache was shared

by ali processors in the same cluster.

Me] Advanced Computer Architecture
The SYM Concept Figure 9.2 shows the structure of a distributed shared memory. A global virtual address
space is shared among processors residing at a large number of loosely coupled processing nodes. This
shared virtual memory (SVM) concept was introduced in Section 4.4.1. Implementation and management
issues of SVM are discussed below.

CPU Node 0
.
N .
~ .
.
8 Memory|| ~. T~
~ ~
~ - ~ “
=7
- - ’:
T A
T
CPU P ;7 Shared
5 /7 Virtual
i |Memory]iNode1 /7 Memory
cPU S / Niode -
-) Node i o
/s 7 SVM
. 47 Page Table ~ Address
. s Virtual
Y irtual Spaoe
/ Address
]CPUI 7 [- Space
FPU -~
Memory| | Nod B
i en \ (nil, read_only, wrilable)/

(a) Distributed shared memory {b) Shared virtual memory mapping

Fig. 9.2 mmmaammm_mma,mwwmswemmaﬂ
mmmwmmpmmmm:mmmwmm(cmd

Shared virtual memory was first developed in a Ph.D. thesis by Li (1986) at Yale University. The idea is
to implement coherent shared memory on a network of processors without physically shared memory. The
coherent mapping of SYM on a message-passing multicomputer architecture is shown in Fig. 9.2b. The
system uses virtual addresses instead of physical addresses for memory references.

Each virtual address space can be as large as a single node can provide and is shared by all nodes in the
systern. Li (1988) implemented the first SVM system, IVY, on a network of Apollo workstations. The SVM
address space is organized in pages which can be accessed by any node in the system. A MEmory-mapping
manager on each node views its local memory as a large cache of pages for its associated processor.

Page Swapping According to Kai Li (1992), pages that are marked read-only can have copies residing
in the physical memories of other processors. A page currently being written may reside in only one local
memory. When a processor writes a page that is also on other processors, it must update the page and then
invalidate all copies on the other processors. Li described the page swapping as follows:

A memory reference causes a page fault when the page containing the memory location is not in a
processor’s local memory. When a page fault occurs, the memory manager retrieves the missing page from
the memory of another processor. If there is a page frame available on the receiving node, the page is moved

Scalable, Muitithreaded, and Dataffow Architectures -)

in. Otherwise, the SVM system uses page replacement policies to find an avallable page frame, swapping its
contents to the sending node.

A hardware MMU can set the access rights (nil, read-only, writable) so that a memory access violating
memory coherence will cause a page fault. The memory coherence problem is solved in TVY through
distributed fault handlers and their servers. To client programs, this mechanism is completely transparent.

The large virtual address space allows programs to be larger in code and data space than the physical
memory on a single node. This SVM approach offers the ease of shared-variable programming in a message-
passing environment. In addition, it improves sofiware portability and enhances system scalability through
modular memory growth.

Example SYM Systems Nitzberg and Lo (1991) conducted a survey of SVM research systems. Excerpted
from their survey, descriptions of four representative SVM systems are summarized in Table 9.1. Dash
implemented SVM with a directory-based coherence protocol. Linda offered a shared associative object
memory with access functions. Plus used a write-update coherence protocol and performed replication only
by program request. Shiva extended the IVY system for the Intel iPSC/2 hypercube. In using SVM systems,
there exists a tendency to use large block (page) sizes as units of coherence. This tends to increase false-
sharing activity,

Table 9.1 Representative SVM Research Systems (Excerpts from Nitzberg and Lo, IEEE Comput, August 1991)

System - Implementation Coherence Special Mechanicy
and o amd L Semantics and Jor Performance
Developer L ' Stmemre R Protocols and-Synchronization
Stanford Dash "Mwh-cenmted ﬁctwerk Release memory consistency | Relaxed echerence,
(Lenoski, Laudon, -of Sl}m(m Graphx:s 4D/340 | with write-invalidate prefetching, and queued
Gharachorloo, Gupta, worimanons with added- protocol, locks for synichronization.
and Hennessy, 1988-). | hardware for colwrent '
.cacbes and prefetching. _ :
Yale Linda (Carriero Software-implemented Coherence varied with Linda could be
and Gelernter, 1982-). | system based.on the environment; hashing implemented for many
concepts of tuple space used in associative search; languages and machines
with access functions . - | no mutable data. using C-Linda or Fortran-
to achieve coherencc - Linda interfaces. -
via vntua! memory
CMU Plus (Bisiani and | A hardware 1mplementauon Used processor consistency, | Pages for sharing, words
Ravishankar, 1988-). | using MC 88000, Caltech | nondemand write-update for coherence, complex
mesh, and Phus kermnel, coherence, delayed operations. synchromzanom
Princeton Shiva (Li and | Software-based system Sequential consistency, Used data structure
Schaefer, 1988). for Tnitel iPSC/2 witha write-invalidate protocol, compaction, messages for
Shiva/native operating 4-Kbyte page swapping, ‘semaphores and signal-
system. e wait, disttibuted memory
' : ' as backing store.

412 - Advanced Computer Architecture

Scalability issues of SVM architectures include determining the sizes of data structures for maintaining
memory coherence and how to take advantage of the fast data transmission among distributed memories in
order to implement latge SVM address spaces. Data structure compaction and page swapping can simplify
the design of a large SVM address space without using disks as backing stores. A number of alternative
choices are given in Li (1992).

9.1.2 Prefetching Techniques

Prefetching techniques are studied below. These involve both hardware and software approaches. Some
benchmark results for prefetching on the Stanford Dash system are presented to illustrate the benefits.

Prefetching Techniques Prefetching uses knowledge about the expected misses in a program to move the
corresponding data close to the processor before it is actually needed. Prefetching can be classified based on
whether it is binding or nonbinding, and whether it is controlled by hardware or software.

With binding prefetching, the value of a later reference (¢.g. a register load) is bound at the time when
the prefetch completes. This places restrictions on when a binding prefetch can be issued, since the value
will become stale if another processor modifies the same location during the interval between prefetch and
reference. Binding prefetching may result in a significant loss in performance due to such limitations.

In contrast, nonbinding prefetching also brings the data close to the processor, but the data remains visible
to the cache coherence protocol and is thus kept consistent until the processor actualiy reads the value.

Hardware-controlled prefetching includes schemes such as long cache lines and instruction lookahead.
The effectiveness of long cache lines is limited by the reduced spatial locality in multiprocessor applications,
while instruction lookahead is limited by branches and the finite lookahead buffer size.

With software-controlled prefetching, explicit prefetch instructions are issued. Software control allows the
prefetching to be done selectively (thus reducing bandwidth requirements) and extends the possible interval
between prefetch issue and actual reference, which is very important when latencies are large.

The disadvantages of software control include the extra instruction overhead required to generate the
prefetches, as well as the need for sophisticated software intervention. It our study, we concentrate on #on-
binding software conirolled prefetching.

Benefits of Prefetching The benefits of prefetching come from several sources. The most obvious benefit
occurs when a prefetch is issued early enough in the code so that the line is already in the cache by the time
it is referenced. However, prefetching can improve performance even when this is not possible (e.g. when
the address of a data structure cannot be determined until immediately before it is referenced). If multiple
prefetches are issued back to back to fetch the data structure, the latency of all but the first prefetched
reference can be hidden due to the pipelining of the memory accesses.

Prefetching offers another benefit in multiprocessors that use an ownership-based cache coherence
protocol. If a cache block line is to be modified, prefetching it directly with ownership can significantly
reduce the write latencies and the ensuing network traffic for obtaining ownership. Network traffic is reduced
in read-modify-write instructions, since prefetching with ownership avoids first fetching a read-shared copy.

Benchmark Resuylts Stanford researchers (Gupta, Hennessy, Gharachorloe, Mowry, and Weber, 1991)
reported some benchmark results for evaluating various latency-hiding mechanisms. Benchmark programs
included a particle-based three-dimensional simulator used in aeronautics (MP3D), an LU-decomposition
program (LU), and a digital logic simulation program (PTHOR). The effect of prefetching is illustrated in
Fig. 9.3 for running the MP3D code on a simulated Dash multiprocessor (Fig. 9.1).

Scalable, Multithreaded, and Dataflow Architectures " 43

100
g 92.7 pre-fetches
iz 90 -] g g [~ sync ops
S g write buffer
3 t-] read
3 80 15.0 - busy
A 68.4
M 2.3
g 6o 44
s .
Z sof 1549
40 38.3
30
20
10 186 | |18
Strategy nopf pf1 pf2 pf3 pf4
Coverage 0% 37% 91% 91% 95%
Source Lines 0 1 2 6 16

Fig.9.3 Effect of various pre-fetching strategies for running the MP3D benchmzrk ona snmulated Dash
multiprocessor (Courtésy of Ancop Gupta et al, 1992) ' '

The simulation Tuns involved 10,000 particles in a 64 x & x 8 space array with five time steps. Five
prefetching strategies were tested (nof, pfl, pf2, pf3, and pf4 in Fig. 9.3). These strategies range from no
prefetching (ropf) to prefetching of the particle record in the same iteration or pipelined across increasing
numbers of iterations {pf? through pf4). The bar diagrams in Fig. 9.3 show the execution times normalized with
respect to the nopf strategy. Each bar shows a breakdown of the times required for prefetches, synchronization
operations, using write buffers, reads, and busy in computing.

The end result was that prefetches were issued for up to 95% of the misses that occurred in the case without
prefetching (referred to as the coverage factor in Fig. 9.3). Prefetching yielded significant time reduction in
synchronization operations, using write buffers, and performing read operations. The best speedup achieved
in Fig. 9.3 is 1.86, when the pf4 prefetching strategy is compared with the nopf strategy. Still the prefetching
benefits would be application-dependent. To introduce the pre-fetches in the MP3D code, only 16 lines of
extra code were added to the source code.

9.1.3 Distributed Coherent Caches

While the coherence problem is easily solved for small bus-based multiprocessors through the use of snoopy
cache coherence protocols, the problem is much more complicated for large-scale multiprocessors that use
general interconnection networks. As a result, some large-scale multiprocessors did not provide caches {e.g.
BBN Butterfly), others provided caches that must be kept coherent by software (e.g. iBM RP3), and still
others provided full hardware support for coherent caches (e.g. Stanford Dash).

41 4“ Advanced Computer Architecture

Dash Experience 'We evaluate the benefits when both private and shared read-write data are cacheable, as
allowed by the Dash hardware coherent caches, versus the case where only private data are cacheable. Figure
9.4 presents a breakdown of the normalized execution times with and without cacheing of shared data for
each of the applications. Private data are cached in both caches.

100 =
7. {59

a0 ' ﬁ Synchronization

Write Miss

80 Read Miss

70
60

Normalized Execution Time

50
40
30
20

10

MP3D LU PTHOR

Fig.9.4 Effect of cacheing shared data in simulated Dash benchmark experiments (Courtesy of Gupta et 2,
Proc. Int. Symp. Comput Archit, Toronto, Canada, May 1991) - '

The execution time of each application is normatized to the execution time of the case where shared
data is not cached. The bottom section of each bar represents the busy time or useful cycles executed by the
processor. The section above it represents the time that the processor is stalled waiting for reads. The section
above that is the amount of time the processor is stalled waiting for writes to be completed. The top section,
labeled “synchronization,” accounts for the time processor is stalled due to locks and barriers.

Benefits of Cacheing As expected, the cacheing of shared read-write data provided substantial gains in
performance, with benefits ranging from 2.2- to 2.7-fold improvement for the three Stanford benchmark
programs. The largest benefit came from a reduction in the number of cycles wasted due to read misses. The
cycles wasted due to write-misses were also reduced, although the magnitude of the benefits varied across the
three programs due to different write-hit ratios.

The cache-hit ratios achieved by MP3D, LU, and PTHOR were 80, 66, and 77%, respectively, for shared-
read references, and 75, 97, and 47% for shared-write references. It is interesting to note that these hit ratios
are substantially lower than the usual uniprocessor hit ratios.

The low hit ratios arise from several factors: The data set size for engineering applications is large,
parallelism decreases spatial locality in the application, and communication among processors results in
invalidation misses. Still, hardware cache coherence is an effective technique for substantially increasing the
performance with no assistance from the compiler or programmer.

Scalable, Multithreaded, and Dataflow Architectures L 45

9.1.4 Scalable Coherence Interface

A scalable coherence interconnect structure with low latency is needed to extend from conventional bused
backplanes to a fully duplex, point-to-point interface specification. The scalable coherence interface (SCI),
which was introduced in Chapter 5, is specified in IEEE Standard 1596-1992. SCI supports unidirectional
point-to-point connections, with two such links between each pair of nodes; packet-based communication is
used, with routing,

Up to 64K processors, memory modules, or IO nodes can effectively interface with a shared SCI
interconnect. The cache coherence protocols used in SCI are directory-based. A sharing list is used to chain
the distributed directories together for reference purposes.

SCI Interconnect Models SCl defines the interface between nodes and the external interconnect, using
16-bit links with a bandwidth of up to 1 Gbyte/s per link. As a result, backplane buses have been replaced
by unidirectional point-to-point links. A typical SC1 configuration is shown in Fig. 9.5a. Each SCI node can
be a processor with attached memory and I/O devices. The SCI interconnect can assume a ring structure or a
crossbar switch as depicted in Figs. 9.5b and 9.5¢, respectively, among other configurations.

Node Node Node

scCl

VME bus

(a) Typical SCI configuration with bridge to other bus

Nodes Nodes
1 2 3 . N 1 2 3 eee N G
/—.—_.
'//ﬂ_d b s iaas /‘f\(g(IV AARAN RN)}(H\“\
Q,) L crossbar Sww
{b) A ring for point-to-point transactions (b) A crossbar multiprocessor

Fig.9.5 SClinterconnection configurations (Reprinted with permission from the IEEE Standard 1596-1992,
copyright © 1992 by IEEE, nc.)

416 . Advanced Computer Architecture

Each node has an input link and an output link which are connected from or to the SCI ring or crossbar.
The bandwidth of SCI links depends on the physical standard chosen to implement the links and interfaces.

In such an environment, the concept of broadcast bus-based transactions is abandoned. Coherence
protocols are based on point-to-point transactions initiated by a requester and completed by a responder.
A ring interconnect provides the simplest feedback connections among the nodes.

The converter in Fig. 9.5a is used to bridge the SCI ring to the VME bus as shown. A mesh of rings can
also be considered using some bridging modules. The bandwidth, arbitration, and addressing mechanisms of
an SCI ring significantly outperform backplane buses. By eliminating the snoopy cache controllers, the SCI
is also less expensive per node, but the main advantage lies in its low latency and scalability.

Although SCI is scalable, the amount of memory used in the cache directories also scales up well.
The performance of the SCI protocol does not scale, since when the sharing list is long, invalidations take
proportionately longer time.

Sharing-List Structures Sharing lists are used in SCI to build chained directories for cache coherence use.
The length of the sharing lists is effectively unbounded. Sharing lists are dynamically created, pruned, and
destroyed. Each coherently cached block is entered onto a list of processors sharing the block.

Processors have the option of bypassing the coherence protocols for locally cached data. Cache blocks
of 64 bytes are assumed. By distributing the directories among the sharing processors, SCI avoids scaling
limitations imposed by using a centrai directory. Communications among sharing processors are supported
by heavily shared memory controllers, as shown in Fig. 9.6.

Processors
CPU, CPUg CPU. CPUp E-Unit
u—5 p— [Ll | Cache
Cantroller
. Coherent block D Non-coherent block s
“WRAM
Memory

Fig. 9.6 SCl cache coherence protocol with distributed directories (Courtesy of D.V. James et al, /EEE
Computer, 1990)

Other blocks may be locally cached and are not visible to the coherence protocols. For every block address,
the memory and cache entries have additional tag bits which are used to identify the first processor (head) in
the sharing list and to link the previous and following nodes.

Doubly linked lists are maintained between processors in the sharing list, with forward and backward
pointers as shown by the double arrows in each link. Noncoherent copies may also be made coherent by
page-level control. However, such higher-level software coherence protocols are beyond the scope of the
SCI standard.

Scalable, Multithreaded, and Dataflow Architectures m 417

Sharing-List Creation The states of the sharing list are defined by the state of the memory and the states of
list entries. Normally, the shared memory is either in a home (uncached) or a cached (sharing-list) state. The
sharing-list entries specify the location of the entry in a multiple-entry sharing list, identify the only entry in
the list, or specify the entry’s cache properties, such as clean, dirty, valid, or stale.

The head processor is always responsible for list management. The stable and legal combinations of the
memory and entry states can specify uncached data, clean or dirty data at various locations, and cached
writable or stale data.

The memory is initially in the home state (uncached), and all cache copies are invalid. Sharing-list
creation begins at the cache where an entry is changed from an invalid to a pending state. When a read-cache
transaction is directed from a processor to the memory controller, the memory state is changed from un-
cached to cached and the requested data is returned.

The requester’s cache entry state is then changed from a pending state to an only-clean state. Sharing-list
creation is illustrated in Fig. 9.7a. Multiple requests can be simultaneously generated, but they are processed
sequentially by the memory controller.

Processors
pend-
new Gopy old new old
2
new new |pendingJ—£—)—| olds(0) |(-—) | news |<—~—-| ofds(1)|(<—)

(1 ~~

read cached \\ read cached ~~.

]
M
Before After Before After
(a) Creation of sharing list (b) Addition of new nodes

Fig.9.7 Sharing-list creation and update examples (Courtesy of D.V.ja'w':es" et al, IEEE Compuw,1 990)

Sharing-List Updates For subsequent memory access, the memory state is cached, and the cache head of
the sharing list has possibly dirty data, As illustrated in Fig. 9.7b, a new requester (cache A) first directs its
read-cache transaction to memory but receives a pointer to cache B instead of the requested data.

A second cache-to-cache transaction, called prepend, is directed from cache A to cache B. Cache B then
sets its backward pointer to point to cache A and returns the requested data. The dashed lines correspond to
transactions between a processor and memory or another processor. The solid lines are sharing-list pointers.

After the transaction, the inserted cache A becomes the new head, and the old head, cache B, is in the
middle as shown by the new sharing list on the right in Fig. 9.7b.

Any sharing-list entry may delete itself from the list. Details of entry deletions are left as an exercise for the
reader. Simultaneous deletions never generate deadlocks or starvation. However, the addition of new sharing-
list entries must be performed in first-in-first-out order in order to avoid potential deadlocking dependences.

The head of the sharing list has the authority to purge other entries from the list to obtain an exclusive entry.
Others may reenter as a new list head. Purges are performed sequentially. The chained-directory coherence
protocols are fault-tolerant in that dirty data is never lost when transactions are discarded.

4) 8" W _ Advanced Computer Architecture

Implementation Issues SCI was developed to support multiprocessor systems with thousands of processors
by providing a coherent distributed-cache image of distributed shared memory and bridges that interface with
existing or future buses. It can support various multiprocessor topologies using Omega or crossbar networks.

Differential emitter coupled logic (ECL) signaling works well at SCI clock rates. The original SCI
implementation uses a 16-bit data path at 2 ns per word. The interface is synchronously clocked. Several
models of clock distribution are supported. With distributed shared-memory and distributed cache coherence
protocols, the boundary between multiprocessors and multicomputers has become blurred in MIMD systems
of this class.

9.1.5 Relaxed Memory Consistency

We have studied weak consistency (WC) (Sindhu et al, 1992) and sequential consistency (SC) in Section 5.4.
Two additional memory models are introduced below for building scalable multiprocessors with distributed
shared memory.

Processor Consistency Goodman (1989) introduced the processor consistency (PC) model in which
writes issued by each individual processor are always in program order. However, the order of writes from
two different processors can be out of program order. In other words, consistency in writes is observed in
each processor, but the order of reads from each processor is not restricted as long as they do not involve
other processors.

The PC model relaxes from the SC model by removing some restrictions on writes from different
processors. This opens up more oppertunities for write buffering and pipelining. Two conditions related to
other processors are required for ensuring processor consistency:

(1) Before a read is allowed to perform with respect to any other processor, all previous read accesses
must be performed.

(2) Before a write is allowed to perform with respect to any other processor, all previous read or write
accesses must be performed.

These conditions allow reads following a write to bypass the write. To avoid deadlock, the implementation
should guarantee that a write that appears previously in program order will eventually be performed.

Release Consistency One of the most relaxed memory models is the release consistency (RC) model
introduced by Gharachorloo et al (1990). Release consistency requires that synchronization accesses in the
program be identified and classified as either acquires (e.g. locks) or releases (e.g. unlocks). An acquire is a
read operation (which can be part of a read-modify-write) that gains permission to access a set of data, while
a release is a write operation that gives away such permission. This information is used to provide flexibility
in buffering and pipelining of accesses between synchronization points.

The main advantage of the relaxed models is the potential for increased performance by hiding as much
write latency as possible. The main disadvantage is increased hardware complexity and a more complex
programming model. Three conditions ensure release consistency:

(1) Before an ordinary read or write access is allowed to perform with respect to any other processor, all
previous acquire accesses must be performed.

Scalable, Muttithreaded, and Dataflow Architectures " 419

{2} Before a release access is allowed to perform with respect to any other processor, all previous ordinary
read and store accesses must be performed.

(3) Special accesses are processor-consistent with one another. The ordering restrictions imposed by weak
consistency are not present in release consistency. Instead, release consistency requires processor
consistency and not sequential consistency.

Release consistency can be satisfied by (i} stalling the processor on an acquire access until it completes,
and (ii} delaying the completion of release access until all previous memory accesses complete. Intuitive
definitions of the four memory consistency models, the SC, WC, PC, and RC, are summarized in Fig. 9.8.

-~

Sequentlal Consistency {SC)
The result of any execution appears as
some imterleaving of the operations of the | Strong
indlvidual processors when executed on a Model
multithreaded sequential machine.
(Lamport, 1979)

/ \

Processor Consistency (PC) Weak Consistency (WC) W
Writes issued by each individual The programmer enforces
processor are never seen out of consistency using
order, but the order of writes from synchronization operators
two different processors can be guaranteed to be sequentially
observed differently. {Goodman, consistent (Dubois et al., 1986;
1989) : Sindhu et al., 1992}

Relaxed
\ / > Models

Release Consistency (RC)

Woeak consistency with two types of
synchronization operators: acquire and
release. Each type of operator is
guaranteed to be processor consistent
{Gharachorloo et al.,1990) -

Py

Fig 9.8 Intuitive definitions offom-memoryconsisuncymdels.The arrows pomtfrom strong to relaxed
consistencies (Courtesy of Nitzberg and Lo, 1EEE Computer, August 1991) -

The cost of implementing RC over that for SC arises from the extra hardware cost of providing a lockup-
free cache and keeping track of multiple outstanding requests. Although this cost is not negligible, the same
hardware features are also required to support prefetching and multiple contexts.

Effect of Release Consistency Figure 9.9 presents the breakdown of execution times under SC and RC
for the three applications. The execution times are normatized to those shown in Fig, 9.3 with shared data
cached. As can be seen from the results, RC removes all idle time due to write-miss latency.

420" T Advanced Computer Architecture

5100 1(; 4 1059 100 [%] Synchronization
[S ' o~ 924 112 B Write Miss
s %0 68 mEHas 8 Read Miss
§ Busy
& 80 Bil362 19.9
w
g 701 9.4
N
T 60[
E 861.6
§ 50+ 61.3 i
529 N

40 N 435 N 49.0

30}

20+

101 | 169 1260 | [260 | 1450 | 148

. _

SC RC sC RC sC RC
MP3D LU PTHOR

Fig.9:9 Effect of relaxing the shared-memory model from sequeritial cmstm{%}mrdmconmy
(RC) (Caurtesy of Gupta et al, Proc. Int. Symp. Comput. Archit, Toronto, Canada, May 1991)

The gains are large in MP3D and PTHOR since the write-miss time constitutes a large portion of the
execution time under SC (35 and 20%, respectively), while the gain is small in LU due to the relatively small
write-miss time under SC (7%).

Effect of Combining Mechanisms The effect of combining various latency-hiding mechanisms is
illustrated by Fig. 9.10 based on the MP3D benchmark results obtained at Stanford University. The idea of
using multiple-context processors will be described in Section 9.2. However, the effect of integrating MC
with other latency-hiding mechanisms is presented below.

The busy parts of the execution times in Fig. 9.10 are equal in all combinations. This is the CPU busy
time for executing the MP3D program. The idle part in the bar diagram corresponds to memory latency and
includes all cache-miss penalties. Ali the times are normalized with respect to the execution time (100 units)
required in a cache-coherent system. The leftmost time bar (with 241 units) corresponds to the worst case of
using a private cache exclusively without shared reads or writes. Long overhead is experienced in this case
due to excessive cache misses. The use of a cache-coherent system shows a 2.41-fold improvement over the
private case. All the remaining cases are assumed to use hardware coherent caches.

The use of release consistency shows a 35% further improvement over the coherent system. The adding
of prefetching reduces the time further to 44 units. The best case is the combination of using coherent caches,
RC, and multiple contexts (MC). The rightmost time bar is obtained from applying all four mechanisms. The
combined results show an overall speedup of 4 to 7 over the case of using private caches.

The above and other uncited benchmark results reported at Stanford suggest that a coberent cache and
relaxed congistency uniformly improve performance. The improvements due to prefetching and multiple

Scalable, Multithreaded, and Dataflow Architectures " 421

contexts are sizable but are much more application-dependent. Combinations of the various latency-hiding
mechanisms generally attain a better performance than each one on its own.

o 240
E
E 20}
8
g 200}
@
i
180
3 .
5 180 | RC: Release Consistency
E MC: Multiple Contexts
2 140}
120
100 -
80 |-
60 |-
40 |
0k _1
0 - < :
Private Coherent Coherent Coherent Coherent Coherent
Cache - cache +RC +RC +RC +RC
+Prefetch +MC +Prefetch
+MC

Dash multiprocessor (Courtésy. of Gupta, 1992)

This section considers multithreaded processors and muitidimensional system architectures.
Only control-flow approaches are described here. Fine-grain machines are studied in
Section 9.3, von Neumann multithreading in Section 9.4, and dataflow multithreading in Section 9.5. Recent
developments in multithreading support by processor hardware are discussed in Chapters 12 and 13.

9.2.1 Multithreading Issues and Solutions

Multithreading demands that the processor be designed to handle multiple contexts simultaneously on a
context-switching basis. We first specify the typical architecture environment using mulitiple-context
processors. Next we present a multithreaded computation model. Then we look further into the latency and
synchronization problems and discuss their solutions in this environment.

427" Advanced Comperter Architecture

Architecture Environment One possible multithreaded MPP system is modeled by a network of processor
(P) and memory (M) nodes as depicted in Fig. 9.11a. The distributed memories form a global address space.
Four machine parameters are defined below to analyze the performance of this network:

Latency (L)
/

Interconnect

F
b B b e

Rate of request (p = 1/R}

(a) The architecture environment. {Courtesy of Rafael Saavedra, 1992)

Initial scheduling overhead Thread synchronization overhead

2 3 4 T~

computation inter-computer
commupnication
{distributed memories)

(b} Multithreaded computation model. {(Courtesy of Gordon Belf, Commun. ACM, August 1992)

/Fig:9.1 Muldithreaded archivecture and its computation model for a massively parallel processing system -

(1) The latency (L): This is the communication latency on a remote memory access. The value of L includes
the network delays, cache-miss penalty, and delays caused by contentions in split transactions.

(2) The number of threads (N): This is the number of threads that can be interleaved in each processor.
A thread is represented by a context consisting of a program counter, a register set, and the required
context status words.

(3) The context-switching overhead (C): This refers to the cycles lost in performing context switching in a
processor. This time depends on the switch mechanism and the amount of processor states devoted to
maintaining active threads. - -

(4) The interval between switches (R): This refers to the cycles between switches triggered by remote
reference. The inverse p = 1/R is called the rafe of requests for remote accesses. This reflects a
combination of program behavior and memory system design. ' '

In order to increase efficiency, one approach is to reduce the rate of requests by using distributed coherent
caches. Another is to eliminate processor waiting through multithreading. The basic concept of multithreading
is described below. g

Multithreaded Computations Bell (1992) has described the structure of the multithreaded parallel
computations model shown in Fig. 9.11b. The computation starts with a sequential thread (1), followed

Scalable, Multithreaded, and Dataflow Architectures .- 3

by supervisory scheduling (2) where the processors begin threads of computation (3), by intercomputer
messages that update variables among the nodes when the computer has a distributed memory (4), and finaily
by synchronization prior to beginning the next unit of parallel work (5).

The communication overhead period (4) inherent in distributed memory structures is usually distributed
throughout the computation and is possibly completely overlapped. Message-passing overhead (send
and receive calls) in multicomputers can be reduced by specialized hardware operating in parallel with
computation.

Communication bandwidth limits granularity, since a certain amount of data has to be transferred with
other nodes in order to complete a computational grain. Message-passing calls (4) and synchronization (5)
are nonproductive. Fast mechanisms to reduce or to hide these delays are therefore needed. Multithreading is
not capable of speedup in the execution of single threads, while weak ordering or relaxed consistency models
are capable of doing this.

Problems of Asynchrony Massively parallel processors operate asynchronously in a network environment.
The asynchrony triggers two fundamental latency problems: remote loads and synchronizing loads, as
observed by Nikhil (1992). These two problems are explained by the following example:

$b)

The remote load situation is illustrated in Fig. 9.12a, Variables 4 and B are located on nodes N2 and N3,
respectively. They need to be brought to node N1 to compute the difference 4 — B in variable €. The basic
computation demands the execution of two remote loads (rload) and then the subtraction.

Example 9.1 Latency problems for remote loads or
synchronizing loads (Rishiyun Nikhil, 1992).

Node N1 Node N2
Node N1 Node N2
CTXT C‘ : Ready 1
—{ 4 crxti]
C Ready 2 [] A
vA pointers Node N3 c
vB vA Node N3
PA| T vB g
pB _.r_—'l 8 A [—H inters
pB —{_ |8

On Node N1, compute; C = A-B demands to execute:

vA = foad pA On Node N1, compute: € = A-B
= remote loads) A and B computed concurrently
vg - ::afvpaﬂ (Thread on N1 must be notified

when A, Bareready
{a) The remots loads prablem {b) The synchronizing loads problem

Fig. 9.12 Two commen problems caused by asynchrony and communication latency mmasskvelyparaﬂé"
procusors(CoureesyofR.S.Nﬂd\H DmEquipmemCorpormon.‘i”z) o

24" Advanced Computer Architecture

Let pA and pB be the pointers to 4 and B, respectively. The two rloads can be issued from the same thread
or from two different threads. The context of the computation on N1 is represented by the variable CTXT. It
can be a stack pointer, a frame pointer, a current-object pointer, a process identifier, etc. In general, variable
names like vA, vB, and C are interpreted relative to CTXT.

In Fig. 9.12b, the idling due to synchronizing loads is illustrated. In this case, 4 and B are computed by
concurrent processes, and we are not sure exactly when they will be ready for node N1 to read. The ready
signals (Readyl and Ready2) may reach node N1 asynchronously. This is a typical situation in the producer-
consurner problem. Busy-waiting may result.

The key issue involved in remote loads is how to avoid idling in node N1 during the load operations.
The latency caused by remote loads is an architectural property. The latency caused by synchronizing loads
also depends on scheduling and the time it takes to compute 4 and B, which may be much Jonger than the
transit latency. The synchronization latency is often unpredictable, while the remote-load latencies are often
predictable. '

Multithreading Solutions This solution to asynchrony problems is to multiplex among many threads:
When one thread issues a remote-load request, the processor begins work on another tiread, and so on
(Fig. 9.13a). Clearly, the cost of thread switching should be much smaller than that of the latency of the
remote load, or else the processor might as well wait for the remote load’s response.

As the internode latency increases, more threads are needed to hide it effectively. Another concern
is to make sure that messages carry continuations. Suppose, after issuing a remote load from thread T,
(Fig. 9.13a), we switch to thread 75, which also issues a remote load. The responses may not retun in
the same order. This may be caused by requests traveling different distances, through varying degrees of
congestion, to destination nodes whose loads differ greatly, etc.

One way to cope with the problem is to associate each remote load and response with an identifier for the
appropriate thread, so that it can be reenabled on the arrival of a response. These thread identifiers are referred
to as continuations on messages. A large continuation name space should be provided to name an adequate
number of threads waiting for remote responses.

The size of the hardware-supported continuation in a name space varies greatly in different system designs:
from 1 in the Dash, 4 in the Alewife, 64 in the HEP, and 1024 in the Tera (Section 9.4) to the local memory
address space in the Monsoon, Hybrid Dataflow/von Neumann, MDP (Section 9.3), and *T (Section 9.5).
Of course, if the hardware-supported name space is small, one can always virtualize it by multiplexing in
software, but this has an associated overhead.

Distributed Cacheing The concept of distributed cacheing is shown in Fig. 9.13b. Every memory location
has an owner node. For example, N1 owns B and N2 owns A. The directories are used to contain import-
export lists and state whether the data is shared (for reads, many caches may hold copies) or exclusive (for
writes, one cache holds the current value).

The directories multiplex among a small number of contexts to cover the cache loading effects. The MIT
Alewife, KSR-1, and Stanford Dash have implemented directory-based coherence protocols. It should be
noted that distributed cacheing offers a solution for the remote-loads problem, but not for the synchronizing-

Scalable, Multithreaded, and Dataflow Architectures

. 425

loads problem. Multithreading offers a solution for remote loads and possibly for synchronizing loads,

However, the two approaches can be combined to solve both types of remote-access problems.

Node N1

cixil ctxi2

0

L:rload A

Node N

2

2

N2

rload req
A

N1
L
cbxtt

N1 /
stant
L

cixt1
v

Node N1

(a) Multithreading solution

Interconnection Network

90 - 0

7P D

2

A: Import; shared

B: export N2; exclusive

l

M

_/

i

Node N2

7P

N

D

~

B: Import; exclusive

A: export N1, N16; shared

|
B [w]

M

oy

P = Processor; D = Directory, C = Cache; M = Memory

(b) Distributed cacheing

Fig.9.13 Twosolutions for overcoming the asynchrony problems (Courtesy of R. S, Nikhil, Digital Equipment

426 Wik Advanced Computer Architecture

9.2.2 Multiple-Context Processors

Multithreaded systems are constructed with multiple-context (or multithreaded) processors. In this section,
we study an abstract model based on the work of Saavedra et al (1990). We then present an example of this
type of processor. We discuss the processor efficiency issue as a function of memory latency (L), the number
of contexts (N), and context-switching overhead (C).

The Enhanced Processor Model A conventional single-thread processor will wait during a remote
reference, so we may say it is idle for a period of time L. A multithreaded processor, as modeled in
Fig. 9.14a, will suspend the current context and switch to another, so after some fixed number of cycles it will
again be busy doing useful work, even though the remote reference is outstanding. Only if all the contexts are
suspended (blocked) will the processor be idle.

Clearly, the objective is to maximize the fraction of time that the processor is busy, so we will use the
efficiency of the processor as our performance index, given by

busy

Efficiency = 9.1

busy + switching + idle

where busy, switching, and idle represent the amount of time, measured over some large interval, that the
processor is in the corresponding state. The basic idea behind a multithreaded machine is to interleave the
exccution of several contexts in order to dramaticatly reduce the value of idle, but without overly increasing
the magniwde of switching. _

The state of a processor is determined by the disposition of the various contexts on the processor. During
its lifetime, a context cycles through the following states: ready. running, leaving, and blocked. There can
be at most one context running or leaving. A processor is busy if there is a context in the running state; it is
switching while making the trapsition from one context to another, i.e. when a context is leaving. Otherwise,
all contexts are blocked and we say the processor is idle.

A running context keeps the processor busy until it issues an operation that requires a context switch. The
context then spends C cycles in the feaving state, then goes into the blocked state for L cycles, and finaily
reenters the ready state. Eventually the processor will choose it and the cycle will start again.

The abstract model shown in Fig. 9.14a assumes one thread per context, and each context is represented
by its own program counter (PC), register set, and process status word (PSW). An example multithreaded
processor in which three thread slots (N = 3) are provided is shown in Fig. 9.14b.

b
& : Example 9.2 A multithreaded processor with three thread
slots (Hiroaki Hirata et al., 1992).

As shown in Fig. 9.14b, the processor is provided with several ipstruction queue unit and decode unit pairs,
called thread slots. Each thread slot, associated with a program counter, makes up a logical processor, while
an instruction fetch unit and all functional units are physically shared among logical processors.

Scalable, Multithreaded, and Dataflow Architectures

~
regs] LPCl
[Psw]
%)
L contexts
% PSW 1 thread per context
® L 2
f; :
c
o
3 Regs| LPC]
PSwW J
AtU Local Remote
Ops Ref Ref

{a) Multithreaded model. (Courtesy of Rafael Saavedra, 1992)

Instructicn Cache

Instruction Fetch Unit

!

—

Instruction Queue Unit
-—u—'_'_'——-_

]
Program Counter
S~] —
Thread Siot L] L

Decode Unit
P

iyt

T

I} ! !

(-0
e
-0

S~
—"

* Standby Station
?/\E‘Tj EIIJ E*;I i}j L? E‘js% l Instruction Schedule Unit

Integer Barrel Integer FP FP FP Load/Sto-| |Load/Sto-
ALU Shifter | |Multiplier] | Adder | |MuHiplier| [Converter] | re unit re unit
1 Y
t t Data Cache
Bk wee B I
= - I n Queue Registers
\ \ \ L
Register Set Register Set Register Set Large Register Files
(aflocated for (allocated for (allocated for and Queue Register
executing thread) waiting thread) ready thread)

(b} Athree-thread processor example (Courtesy of H. Hirata et al, Proe 19" it Symp. Comput. Archit.,
Australia, May 1992)

Fig. 9.14 Multinle-context processor model and an example design

- sa7

420" Advanced Computer Architecture

An instruction queue unit has a buffer which saves some instructions succeeding the instruction indicated
by the program counter. The buffer size needs to be at least B=Nx C words, where A is the number of thread
slots and C is the number of cycles required to access the instruction cache.

An instruction fetch unit fetches at most B instructions for one thread every C cycles from the instruction
cache and attempts to fill the buffers in the instruction queue unit. This fetching operation is done in an
interleaved fashion for multiple threads. So, on the average, the buffer in one instruction queue unit is filled
once in B cycles,

When one of the threads encounters a branch instruction, however, that thread can preempt the prefetching
operation. The instruction cache and fetch unit might become a bottieneck for a processor with many thread
slots. In such cases, a bigger and/or faster cache and another fetch unit would be needed.

Context-Switching Policies Different multithreaded architectures are distinguished by the context-
switching policies adopted. Specified below are four switching policies:

(1) Switch on cache miss—This policy corresponds to the case where a context is preempted when it
causes a cache miss. In this case, R is taken to be the average interval between misses (in cycles), and
L the time required to satisfy the miss. Here, the processor switches contexts only when it is certain
that the current one will be delayed for a significant number of cycles.

(2) Switch on every load—This policy allows switching on every load, independent of whether it will cause
a miss or not. In this case, R represents the average interval between loads. A general multithreading
model assumes that a context is blocked for L cycles after every switch; but in the case of a switch-on-
load processor, this happens only if the load causes a cache miss.

The general modet can be employed if it is postulated that there are two sources of latency (L, and
L,), each having a particular probability (p, and p;) of occurring on every switch. If L, represents the
latency on a cache miss, then p; corresponds to what is normally referred to as the miss ratio. L, is a
zera-cycle memory latency with probability p.

(3) Switch on every instruction—This policy allows switching on every instruction, independent of
whether it is a load or not. In other words, it interieaves the instructions from different threads on
a cycle-by-cycle basis. Successive instructions become independent, which will benefit pipelined
execution. However, the cache miss may increase due to breaking of locality. It has been verified
by some trace-driven experiments at Stanford that cycle-by-cycle interleaving of contexts provides
a performance advantage over switching on a cache miss in that the context interleaving could hide
pipeline dependences and reduce the context switch cost.

(4) Switch on block of instruction—Blocks of instructions from different threads are interleaved. This will
improve the cache-hit ratio due to locality. It will also benefit single-context performance.

Processor Efficiencies A singie-thread processor executes a context until a remote reference is issued (R
cycles) and then is idie until the reference completes (L cycles). There is no context switch and obviously no
switch overhead. We can model this behavior as an alternating renewal process having a cycle of R + L. In
terms of Eq. 9.1, R and L correspond to the amount of time during a cycle that the processor is busy and idle,
respectively. Thus the efficiency of a single-threaded machine is given by

R+L 1+L/R

E 9.2)

Scalable, Multithreaded, and Dataflow Architectures . 49

This shows clearly the performance degradation of such a processor in a parallel system with a large
memory latency,

With multiple contexts, memory latency can be hidden by switching to a new context, but we assume that
the switch takes C cycles of overhead. Assuming the run length between switches is constant with a sufficient
number of contexts, there is always a context ready to execute when a switch occurs, so the processor is never
idle. The processor efficiency is analyzed below under two different conditions as illustrated in Fig. 9.15.

Time [C[R]
ClIR L
[C[R] L Time

ICTR] L [C] idie R

Contexts [c[R ! L Contexts [CTR] L
[C] R] L [CIRT L
[CI R | L }] L

[rR1] L] LR] L]
{RICIRICTRICIR[ET R ICT R [E[RC) [RICTRIET R IC[R [Idie |
(a) Snapshots of context swilching in the saturation region (a} Snapshots of context switching in the linear region

Processor

efficiency

10 mmmm s o ol

saturation

linear

;
1
1
]
1
1
1
]
'
'
+
i
1

MNumber of contexts

(c) Efficiency curve

Fig.9.15 Context switching and processor efficiency as a function of the number of contexts (Courtesy of
Rafael Saavedra, 1992)

(1) Saturation region—In this saturated region, the processor operates with maximum utilization, The
cycle of the renewal process in this case is R + C, and the efficiency is simply

__R _ 1
R+C 14+C/R

sat 9.3)
Observe that the efficiency in saturation is independent of the latency and also does not change with a
further increase in the number of contexts.

Saturation is achieved when the time the processor spends servicing the other threads exceeds the
time required to.process a request, i.e., when (N~ 1)(R + C) > L. This gives the saturation point, under
constant run length, as

430 . Advanced Computer Architecture

L
Ny= RIC +1 9.4)
(2) Linear region—When the number of contexts is below the saturation point, there may be no ready
contexts after a context switch, so the processor will experience idle cycles. The time required to
switch to a ready context, execute it until a remote reference is issued, and process the reference is
equal to R + C + L. Assuming N is below the saturation point, during this time all the other contexts

have a turn in the processor. Thus, the efficiency is given by
_ NR
CR+CHL

Observe that the efficiency increases linearly with the number of contexts until the safuration point
is reached and beyond that remains constant. The equation for E,, gives the fundamental limit on the
efficiency of a multithreaded processor and underlines the importance of the ratio C/R. Unless the
context switch is extremely cheap, the remote reference rate must be kept low.

(9.5)

Eiin

Figures 9.15a and 9.15b show snapshots of context switching in the saturation and linear regions,
respectively. The processor efficiency is plotted as a function of the number of contexts in Fig. 9.15¢.

In Fig. 9.16, the processor efficiency is plotted as a function of the memory latency L with an average run
length R = 16 cycles. The C = 0 curve corresponds to zero switching overhead. With C = 16 cycles, about
50% efficiency can be achieved. These results are based on a Markov model of multithreaded architecture
by Saavedra (1992). It should be noted that multithreading increases both processor efficiency and network
traffic. Tradeoffs do exist between these two opposing goals, and this has been discussed in a paper by
Agarwal (1992).

100 c=0 Number of Contexts = 2 1.004 Number of Contexts = 2
0.90 0.90
0.80 4 0.80
E E
f i f
§ 0.70 { 0.70+
i i
¢ 060 - c 0801
i i
e 0.50 4 e 0.504
n n
€ 0.40 - € 0.40
y ¥
0.30 - 0.30
0.20 A 0.20
0.10 T 7 T 0-10 1 T 1
¢ 50 100 150 200 0 50 100 150
Memory Latency (cycies) Memory Latency (cyclas)
{a) Two contexts per processor (b} Six contexts per processor

Fig.9.16 Processor efficiency of 2 multithreaded architecture (Courtesy of R. Saavedra, D. £ Culler, and
T. von Eicken, 1992) :

Scalable, Multithreaded, and Dataflow Architectures - 43

9.2.3 Multidimensional Architectures

In order to enhance the scalability of multiprocessor systems, many research groups have explored economical
and multidimensional architectures that support fast communication, coherence extension, distributed shared
memory, and modular packaging.

The architecture of massively parallel processors has evolved from one-dimensional rings to two-
dimensional and three-dimensional meshes or tori as illustrated in Fig. 9.17. The Maryland Zmob
experimented on a slotted token ring for building a multiprocessor. Both the CDC Cyberplus and KSR-1
used hierarchical (two-level) ring architectures. The ring is the simplest architecture to implement from the
viewpoint of backplane packaging.

1-D Ring
N N N
Marytand CDC Cyberplus KSR-1
Zmob
2-D Mesh
A
A) I N I
Stanford MIT Alewife Wisconsin Intel Caltech
Dash Multicube Paragon Mosaic C
3-D Mesh/Torus
(.
N N) I
MIT USC/OMP Tera Cray/MPP
J-Machine

Fig.9.17 The evolution from one-dimensional rmg to two-dimensional mesh and then to wme-dtmmsuonal
mesh/tonis archi%ecmre for building massively parallel processors.

Two-dimensional meshes were adopted in the Stanford Dash, the MIT Alewife, the Wisconsin Multicube,
the Intel Paragon, and the Caltech Mosaic C. A three-dimensional mesh/torus was implemented in the MIT
J-Machine, the Tera computer, and in the Cray/MPP architecture, called T3D. The USC orthogonal multi-
processor (OMP) could be extended to higher dimensions. However, it becomes more difficult to build
higher-dimensional architectures with conventional two-dimensional circuit boards.

Instead of using hierarchical buses or switched network architectures in one dimension, multiprocessor
architectures can be extended to a higher dimensionality or multiplicity along each dimension. The concepts are
described below for two- and three-dimensional meshes proposed for the Multicube and OMP architectures,
respectively.

The Wisconsin Multicube This architecture was proposed by Goodman and Woest (1988) at the University
of Wisconsin. It employed a snooping cache system over a grid of buses, as shown in Fig. 9.18a. Each
processor was connected to a multilevel cache.

437 .

Tt [Cashe
[Row Bus, |
M RB,
R R -7 O 2 T A W
[e] o e, [O (OO
Cache MD'Q M0‘1 Mﬂ.n—"
(Row Bus m| Q RB,4
NP IF P e [O FO-+O
N 5 A T e [Mgl My, M5 g
3 8 . o [. *
(7] |[|°] e 2|0 I :
—o—} Re, |
[Row BUS] Py " Cgod) Cﬂ_b__—--c-s-n—1
H l] -1 Mn~1‘0 Mn—1,1 M<’H.n—1
o] e [
{a) The Wisconsin Multicube (b) The two-cimensional OMP(2.n). (Pi:
Processors; Mij: memory modules: RB;: row
buses; CBj: column busas)
€,
-) o %
// L@ // —@ // //
,11@ P ,’I-@ ,/ @ ,/ a
4 4 o 7 A
e _\(5? L @ L7 16D e @
(@ B K 3
A | =g s m A
T8 /15 1@ 10
& Sl] | Te RS
r Kk I'q A
A® 1o %2 T
k) (] 3|
EEEEE 8
n ,/ _® I, I/
% @ 3 h 2
§ it .’ e @ 7
L]
' 9
G| oA i3 e g
I) (39
7
i @ ’// \ 1/’@
A r d
/ e T J5ia)
& e e ° ‘o
e i & i @ i /y'- access
=3 b r
) ® a5

a e
X - acCass

{c) The 3-D OMF {3,4) architecture. (Processors are labeled a, b, ... p;
memory modules are labeled 00.01..., 63)
Fig.9.48 The Multicube and orthogonal multiprocessor architectures {Courtesy of Goodman and Woest,
1988, and of Hwang et al, 1989)

Advanced Computer Architecture

Scalable, Multithreaded, and Dataflow Architectures _— 433

The first-level cache, called the processor cache. was a high-performance SRAM cache designed with the
traditional goal of minimizing memory latency. A second-level cache, referred to as the snooping cache, was
a very large cache designed to minimize bus traffic.

Each snooping cache monitored two buses, a row bus and a colurn bus, in order to maintain data
consistency among the snooping caches. Consistency between the two cache levels was maintatined by using
a write-through strategy to ensure that the processor cache is always a strict subset of the snooping cache. The
main memory was divided up among the column buses. All processors tied to the same column shared the
same home memory. The row buses were used for intercolumn communication and cache coherence control.

The proposed architecture was an example of a new class of interconnection topologies, the muiticube,
consisting of N=n* processors, where each processor was connected to & buses and each bus was connected to
r processors. The hypercube is a special case where » = 2. The Wisconsin Multicube was a two-dimensional
multicube (k = 2), where » scaled to about 32, resulting in a proposed system of over 1000 processors.

The Orthogonal Multiprocessor In the proposed OMP architecture (Fig. 9.18b), n processors
simultaneously access n rows or # columns of interleaved memory modules. The n# X n memory mesh is
interleaved in both dimensions. In other words, each row is n-way interleaved and so is each column of
memory modules. There are 2 logical buses spanning in two orthogonal directions.

The synchronized row access or column access must be performed exclusively. In fact, the row bus R;
and the column bus C; can be the same physical bus because only one of the two will be used at a time. The
memory controller (MC) in Fig. 9.18b synchronizes the row access and column access of the shared memory.

The OMP architecture supports special-purpose computations in which data sets can be regularly arranged
as matrices. Simulated performance results obtained at USC verified the effectiveness of using an OMP in
matrix algebraic computations or in image processing operations.

In Fig. 9.18b, each of the memory modules M; is shared by two processors P; and P;. In other words, the
physical address space of processor P; covers only the ith row or the ith column of the memory mesh. The
OMP is well suited for SPMD operations, in which » processors are synchronized at the memory-access level
when data sets are vectorized in matrix format.

Multidimensional Extensions The above OMP architecture can be generalized to higher dimensions. A
generalized orthogonal multiprocessor is denoted as an OMP(n. k), where n is the dimension and k is the
multiplicity, There are p= K processors and m = £ memory modules in the system, where p 3> nand p 3> k.

The system uses p memory buses, each spanning into » dimensions. But only one dimension is used in a
given memory cycle. There are £ memory modules attached to each spanning bus.

Each module is connected to » out of p buses through an n-way switch. It should be noted that the
dimension # corresponds to the number of accessible ports that each memory module has. This implies that
each module is shared by nout of p = Kl processors. For example, the architecture of an OMP(3.4) is shown
in Fig. 9.18¢, where the circles represent memory modules, the sguares processor modules, and the circles
inside squares computer modules.

The 16 processors orthogonally access 64 memory modules via 16 buses, each spanning into three
directions, called the x-access, y-access, and z-access, respectively. Various sizes of OMP architecture for
different values of # and k are given in Table 9.2. A five-dimensional OMP with multiplicity £ = 16 has 64K
Processors.

43 . Advanced Computer Architecture

Table 9.2 Orthogonal Multiprocessor of Dimension n and Muttiplicity k

OMP(n, &) p=k"! m=k"
OMP{(2, 8) .8 64
OMP(2, 16) 16 256
OMP(3, 8) 64 512
OMP(3, 16) 256 4096
OMP(4, 8) 512 4096
OMP(4, 16) 4096 65,536
OMP(5,16) 65,536 1,048,576

Note: p = number of processors; # = number of memory modules.

Traditionally, shared-memory multiprocessors like the Cray Y-MP were used to perform
coarse-grain computations in which each processor executed programs having tasks of a
few seconds or longer. Message-passing multicomputers are used to execute medium-grain programs with
approximately 10-ms task size as in the iPSC/1. In order to build MPP systems, we may have to explore a
higher degree of parallelism by making the task grain size even smaller.

Fine-grain parallelism was utilized in SIMD or data-parallel computers like the CM-2 or on the message-
driven J-Machine and Mosaic C to be described below. We first characterize fine-grain parallelism and discuss
the network architectures proposed for such systems. Special attention is paid to the efficient hardware or
software mechanisms developed for achieving fine-grain MIMD computation.

9.3.1 Fine-Grain Parallelism

We compare below the grain sizes, communication latencies, and concurrency in four classes of parallel
computers. This comparison leads to the rationales for developing fine-grain multicomputers. In Chapter 13
we shall review recent developments.

Latency Analysis The computing granularity and communication latency of leading early examples of.
multiprocessors, data-paratlel computers, and medium-and fine-grain multicomputers are summarized in
Table 9.3, These table entries summarize what we have learned in Chapters 7 and 8. Four attributes are
identified to characterize these machines. Only typical values for a typical program mix are shown. The
intention is to show the order of magnitude in these entries.

The communication latency T, measures the data or message transfer time on a system interconnect.
This corresponds to the shared-memory access time on the Cray Y-MP, the time required to send a 32-bit
value across the hypercube network in the CM-2, and the network latency on the iPSC/1 or J-Machine. The
synchronization overhead T, is the processing time required on a processor, or on a PE, or on a processing
node of a multicomputer for the purpose of synchrontzation.

The sum T, + T, gives the total time required for IPC. The shared-memory Cray Y-MP had a short 7
but a long T,. The SIMD machine CM-2 had a short 7 but a long 7. TFhe long latency of the iPSC/1 made
it unattractive based on fast advancing standards. The MIT J-Machine was designed to make a major
improvement in both of these communication delays.

Scatable, Multithreaded, and Dataflow Architectures b 435

Fine-Grain Parallelism The grain size T. ¢ 1s measured by the execution time of a typical program, including
both computing time and communication time involved. Supercomputers handle large grain. Both the CM-2
and the J-Machine were designed as fine-grain machines. The iPSCY/I was a relatively medium-grain machine
compared with the rest,

Large grain implies lower concurrency or a lower DOP (degree of parallelism). Fine grain leads to a much
higher DOP and also to higher communication overhead. SIMD machines used hardwired synchronization
and massive parallelism to overcome the problems of long network latency and slow processor speed. Fine-
grain muiticomputers, like the J-Machine and Caltech Mosaic, were designed to lower both the grain size and
the communication overhead compared to those of traditional multicomputers.

Table 9.3 Fine-Grain, Medium-Grain, and Coarse-Grain Machine Characteristics of Some Example Systems

Machine
Characteristics Cray Connection Intel MIT
¥MP Machine CM-2 iPSC/I J-Machine

Communication 40 ns via shared 600 pis per 32-bit 5ms 2 us
latency, T, memory send operation
Synchronization 20 us 125 ns per bit- - 500 ps 1 us
overhead, T, slice operation

in lock step
Grain size, 7, 20 s 4 us per 32-bit 10 ms 5 s

result per PE

instruction .
Concurrency 2-16 BK ~64K 8128 1IK-64K
(DOP)-
Remark Coarse-grain Fine-grain data Medium-grain Fine-grain

supercomputer parallelism multicomputer multicomputer

9.3.2 The MIT J-Machine

The architecture and building block of the MIT J-Machine, its instruction set, and system design considerations
are described below based on the paper by Dally et al (1992). The building block was the message-driven
processor (MDP), a 36-bit microprocessor custom-designed for a fine-grain multicomputer.

* The J-Machine Architecture The k-ary n-cube networks were applied in the MIT J-Machine. The initial
prototype J-Machine used a 1024-node network (8 x 8 x 16}, which was a reduced 16-ary 3-cube with 8
nodes along the x- and y-dimensions and 16 nodes along the z-dimension. A 4096-node J-Machine would
use a full 16-ary 3-cube with 16 x 16 x 16 nodes. The J-Machine designers calied their network a three-
dimensional mesh.

Network addressing limited the size of the J-Machine to a maximum configuration of 65,536 nodes,
corresponding to a three-dimensional mesh with 32 x 32 x 64 nodes. The architecture of the three-dimensional
mesh or a general k-ary n-cube was shown in Fig. 2.20 for the case of & = 4. All hidden parts (nodes and links)
are not shown for purposes of clarity. Clearly, every node has a constant node degree of 6, and there are three
rings crossing each node along the three dimensions. The end-around connections can be folded (Fig. 2.21b)
to balance the wire length on all channels.

436”500

The MDP Design The MDP chip included a processor, a 4096-word by 36-bit memory, and a built-in router

chip memory controller with error checking and correction
(ECC) capability permitted local memory to be expanded to | million words by adding external DRAM

s. The processor was message-driven in the sense that it executed functions in response to messages, via

with network ports as shown in Fig. 9.19. An on-

chip:

the dispatch mechanism. No receive instruction was needed.

Advanced Computer Architecture

512 x 144-bit
SRAM
(2048 words)

512 x 144-bit
SRAM
{2048 words)

Internal memory

Internal memory

15 15 interface interface
X— S X+
Y " Y X router ¥ router Z router
7— A Message fe—>—-2Z+
driven
Processor 14
Diagnostic 7 g External Net input | N
o ~ D Pro- [et output
2 12 B i feteh][iormal
c
—— | mamo
(a) MDP pinauts Address 8 | [pieg- interfacr:ye'
arithimetic | | 2 | | nostic
unit E 3
(Datapath) = £ Registers
£ S || Arithmeticiogic
5] unit
w E‘ (Datapath}
(b} MDP chip floor plan
Control Prefetch
[1 bus
36 Extemnal C[—p<™ To
Memory A= external
RALU AAU Memory i1 DRAM
Interface D
12
I Q bus
Abus
C bus 36 4
20 18
6x15
MNetwork Network
Network «——2—s :
channels Routers input output
i , N
18

(¢) Schematic block diagram

Fig.9.19 The message-driven processor (MDP) architecture (Courtesy of W. Dally et al: reprinted with
permission from IEEE Micro, April 1992) :

Scolable, Muttithreaded, and Dataflow Architectures - 437

The MDP created a task to handle each arriving message. Messages carrying these tasks drove each
computation. MDP was a general-purpose multicomputer processing node that provided the communication,
synchronization, and global naming mechanisms required to efficiently support fine-grain, concurrent
programming models. The grain size was as small as 8-word objects or 20-instruction tasks. As we have
seen, fine-grain programs typically execute from 10 to 100 instructions between communication and
synchronization actions,

MDPF chips provided inexpensive processing nodes with plentiful VLSI commeodity parts to construct the
Jellybean Machine (J-Machine) multicomputer. As shown in Fig. 9.19a, the MDP appeared as a component
with a memeory port, six two-way network ports, and a diagnostic port,

The memory port provided a direct interface to up to 1M words of ECC DRAM, consisting of
11 multiplexed address lines, a 12-bit data bus, and 3 control signals. Prototype J-Machines used three 1M x
4 static-column DRAMs to form a four-chip processing node with 262,144 words of memory. The DRAMs
cycled three times to access a 36-bit data word and a fourth time to check or update the ECC check bits,

The network ports connected MDPs together in a three-dimensional mesh network. Each of the six ports
corresponded to one of the six cardinal directions (+ X, —x, +y, -y, +2, —z) and consisted of nine data and six
control lines. Each port connected directly to the opposite port on an adjacent MDP,

The diagnostic port could issue supervisory commands and read and write MDP memory from a console
processor (host). Using this port, a host could read or write at any location in the MDP’s address space, as
well as reset, interrupt, halt, or single-step the processor. The MDP chip floor plan is shown Fig. 9.19b.

Figure 9.19¢ shows the components built inside the MDP chip. The chip included a conventional
microprocessor with prefetch, control, register file and ALU (RALU), and memory blocks. The network
communication subsystem comprised the routers and network input and output interfaces. The address
arithmetic unit (AAU) provided addressing functions. The MDP also included a DRAM interface, control
clock, and diagnostic interface.

Instruction-Set Architecture The MDP extended a conventional microprocessor instruction-set
architecture with instructions to support parallel processing. The instruction set contained fixed-format, three-
address instructions. Two 17-bit instructions fit into each 36-bit word with 2 bits reserved for type checking.

Separate register sets were provided to support rapid switching among three execution levels: background,
priority 0 (P0), and priority 1 (P1). The MDP executed at the background level while no message created a
task, and initiated execution upon message arrival at PO or P] level depending on the message priority.

P1 level had higher prierity than PO level. The register set at each priority level included four GPRs, four
address registers, four ID registers, and one instruction pointer (IP). The ID registers were not used in the
background register set.

Communication Support The MDP provided hardware support for end-to-end message delivery including
formatting, injection, delivery, buffer allocation, buffering, and task scheduling. An MDP transmitted a
message using a series of SEND instructions, each of which injected one or two words into the network at
gither priority O or 1.

Consider the following MDP assembly code for sending a four-word message using three variants of the
SEND instruction.

SEND RO0 ; send net address (priority ()

SEND2 R1,R2,0 : header and receiver (priority 0)
SEND2E R3,[3,A3],0 ; selector and continuation end message {priority ()

438 Wi Advanced Computer Architecture

The first SEND instruction reads the absolute address of the destination node in < X, ¥ Z > format from
RO and forwards it to the network hardware. The SEND2 instruction reads the first two words of the message
out of registers R1 and R2 and enqueues them for transmission. The final instruction enqueues two additional
words of data, one from R3 and one from memory. The use of the SEND2E instruction marks the end of the
message and causes it to be transmitted into the network.

The J-Machine was a three-dimensional mesh with two-way channels, dimension-order routing, and
blocking flow control (Fig. 9.20). The faces of the network cube were open for use as /O ports to the
machine. Each channel could sustain a data rate of 288 Mbps (million bits per second). All three dimensions
could operate simultaneously for an aggregate data rate of 864 Mbps per node.

- . — 2

Fig.9.20 E.cube routing from node (1,5, 2) to node (5, 1,4) on a 6-ary 3-cube

Message Format and Routing The J-Machine used deterministic dimension-order E-cube routing. As
shown in Fig. 9.20, all messages routed first in the x-dimension, then in the y-dimension, and then in the
z-dimension. Since messages routed in dimension order and messages running in opposite directions along
the same dimension cannot block, resource cycles were thus avoided, making the network provably deadlock-
free.

Sb)

The following message consists of nine flits. The first three flits of the message contain the x-, y-, and
z-addresses. Each node along the path compares the address in the head flit of the message. If the two indices
match, the node routes the rest to the nexi 1imension. The final fiit in the message is marked as the tail.

Example 9.3 A typical message in the MIT J-Machine
(W. Dally et al, 1992)

Scalable, Multithreaded, and Dotaflow Architectures R 430

Flit Contents Remarks

1 5:+ x-address

2 1= y-address

3 4:+ z-address

4 Msg: 00 Method to call

5 00440

6 INT: 00 Argument to method
7 0023

8 INT:00 Reply address

9 <1:5:2> T]

The MDP supported a broad range of paraliel programming models, including shared memory, data-
parallel, dataflow, actor, and explicit message passing, by providing a low-overhead primitive mechanism for
communication, synchronization, and naming.

Its commumication mechanisms permitted a user-level task on one node to send a message o any other
node in a 4096-node machine in less than 2 ps. This process did not consume any processing resources on
intermediate nodes, and it automatically allocated buffer memory on the receiving node. On message arrival,
the receiving node created and dispatched a task in less than 1 ps.

Presence tags provided synchronization on all storage locations. Three separate register sets allowed fast
context switching. A translation mechanism maintained bindings between arbitrary names and values and
supported a global virtual address space. These mechanisms were selected to be general and amenable to
efficient hardware implementation. The J-Machine used wormhole routing and blocking flow control, A
combining-tree approach was used for synchronization.

The Router Design The routers formed the switches in a J-Machine network and delivered messages
to their destinations. As shown in Fig. 9.21a, the MDP contained three independent routers, one for each
bidirectional dimension of the network.

Each router contained two separate virtual networks with different priorities that shared the same physical
channels. The priotity-1 network could preempt the wires even if the priority-0 network was congested or
Jjammed. The priority levels supported multi-threaded operations.

Each of the 18 router paths contained buffers, comparators, and output arbitration (Fig. 9.21). On each
data path, a comparator compared the lead flit, which contained the destination address in that dimension, to
the node coordinate. If the head flit did not match, the message continued in the current direction. Otherwise
the message was routed to the next dimension.

A message entering the dimension competed with messages continuing in the dimension at a two-to-
one switch. Once a message was granted this switch, all other input was locked out for the duration of the
message. Once the head flit of the message had set up the route, subsequent flits followed directly behind it.

440" il Advanced Computer Architecture

Netout
l Forward r_l r‘ Forward
Priority O l_l u "
K -— X+
Priori
noi'ty ! Address check
v Priority 0 ve Frevious . D — Next
Priority 1 dimensicn L. ‘—D dimension
l Sign check
Priority O S
z- = 2+ [] —
Pricrity 1 Backward u Backward
Netin Address check
{a) Dual-priority levels per dimension (a) Each priority with forward, reverse, and previous
in the router data paths to the next dimension.

Fig.9.21 Priority control and dimension-order router design in the MDP chip (Courtesy of W. Dally et al;
reprinted with permission from IEEE Micro, April 1992) .~ . - . : o :

Two priorities of messages shared the physical wires but used completely separate buffers and routing
logic. This allowed priority-1 messages to proceed through blockages at priority 0. Without this ability, the
system would not be able to redistribute data that caused hot spots in the network.

Synchronization The MDP synchronized using message dispatch and presence tags on all states. Because
each message arrival dispatched a process, messages could signal events on remote nodes. For example, in
the following combining-trec example, each COMBINE message signals its own arrival and initiates the
COMBINE routine.

In tesponse to an arriving message, the processor may set presence tags for task synchronization. For
example, access to the value produced by the combining tree may be synchronized by initially tagging as
empty the location that will hold this value. An attempt to read this location before the combining tree has
written it will raise an exception and suspend the reading task until the root of the tree writes the value.

L)
& Example 9.4 Using a combining tree for synchronization
of events (W. Dally et al, 1992)

A combining tree is shown in Fig. 9.22. This tree sums results produced by a distributed computation. Each
node sums the input values as they arrive and then passes a result message to its parent.

Scalable, Muttithreaded, and Dataflow Architectures

/
Value =7
Count = 2
~
Value =7 Value = 12
Count = Count =1

" 44

Value = 0

Count =

S NN

Fig.9.22 A combining tree for internode communication or synchronization {Courtesy of W. Dally et al, 1992)

A pair of SEND instructions was used to send the COMBINE message to a node. Upon message arrival,
the MDP buffered the message and created a task to execute the following COMBINE routine written in

MDP assembly code:

COMBINE: MOVE
MOVE
ADD
MOVE
MOVE
ADD
MOVE
BNZ
MOVE
SEND2
SEND2E

DONE: SUSPEND

[1,A3], COMB
[2, A3], Rl

R1, COMB.VALUE, R1
R1, COMB.VALUE
COMB.COUNT, R2
R2,-1,R2

R2, COMB.COUNT
R2, DONE

HEADER, RO

COMB.PARENT_NODE, RO ;

COMB.PARENT, R1

»

get node pointer from message
get value from message

store result
get Count

store decremented Count
get message header

send message to parent
with value

If the node was idle, execution of this routine began three cycles after message arrival. The routine loaded
the combining-node peinter and value from the message, performed the required add and decrement, and, if
Count reached zero, sent a message to its parent.

Research Issues The J-Machine was an exploratory research project. Rather than being specialized for
a single model of computation, the MDP incorporated primitive mechanisms for efficient communication,
synchronization, and naming. The machine was used as a platform for software experiments in fine-grain

parallel programming.

Reducing the grain size of a program increases both the potential speedup due to parallel execution and
the potential overhead associated with parailelism. Special hardware mechanisms for reducing the overhead

447" Advanced Computer Architecture

due to communication, process switching, synchronization, and multi-threading were therefore central to
the design of the MDP. Software issues such as load balancing, scheduling, and locality also remained open
questions.

The MIT research group led by Dally implemented two languages on the J-Machine: the actor language
Concurrent Smalltalk and the dataflow language Id. The machine’s mechanism also supported dataflow
and object-oriented programming models using a global name space. The use of a few simple mechanisms
provided orders of magnitude lower communication and synchronization overhead than was possible with
multicomputers built from then available off-the-shelf microprocessors.

9.3.3 The Caltech Mosaic C

The Caltech Mosaic C was an experimental fine-grain multicomputer that employed single-chip nodes and
advanced packaging technology to demonstrate the performance/cost advantages of fine-grain multicomputer
architecture. We describe below the architecture of the Mosaic C and review its application potentials, based
on a report by Seitz (1992), the project leader at Caltech.

From Cosmic Cube to Mosaic C The evolution from the Cosmic Cube to the Mosaic is an example of
one type of scaling track in which advances in technology are employed to reimplement nodes of a similar
logical complexity but which are faster and smaller, have lower power, and are less expensive. The progress
in microelectronics over the preceding decade was such that Mosaic nodes were =~ 60 times faster, used
~ 20 times less power, were = 100 times smaller, and were (in constant dollars) = 25 times less expensive to
manufacture than Cosmic Cube nodes.

Routing-Mesh ,

Local-Area Network Network , /
/
/
s
/
/
Host ,
/
/
/
-~
(Message-Passing Network) g
- -~
rd
- Packet
v - Processor(s) Interface
oo ‘ Memory bus |
A AN
N computing nodes N . RAM ROM
~

Fig.9.23 The Caltech Mosaic architecture {Courtesy of C. Seitz, 1992)

Each Mosaic node included 64 Mbytes of memory and an 11-MIPS processor, a packet interface, and a
router. The nodes were tied together with a 60-Mbytes/s, two-dimensional routing-mesh network (Fig. 9.23).

Scatable, Multithreaded, and Dataflow Architectures . 443

The compilation-based programming system allowed fine-grain reactive-process message-passing programs
to be expressed in C+—, an extension of C++, and the run-time system performed automatic distributed
management of system resources.

Mosaic C Node The Mosaic C multicomputer node was a single 9.25 mm x 10.00 mm chip fabricated in
a 1.2-um-feature-size, two-level-metal CMOS process. At 5-V operation, the synchronous parts of the chip
operated with large margins at a 30-MHz clock rate, and the chip dissipated = 0.5 W.

The processor also included two program counters and two sets of general-purpose registers to allow
zero-time context switching between user programs and message handling. Thus, when the packet interface
received a complete packet, received the header of a packet, completed the sending of a packet, exhausted the
allocated space for receiving packets, or any of several other events that could be selected, it could interrupt
the processor by switching it instantly to the message-handling context.

Instead of several hundred instructions for handling a packet, the Mosaic typically required only about 10
instructions. The number of clock cycles for the message-handling routines could be reduced to insignificance
by placing them in hardware, but the Caltech group chose the more flexible software mechanism so that they
could experiment with different message-handling strategies.

Mosaic C 8 x 8 Mesh Boards The choice of a two-dimensional mesh for the Mosaic was based on a 1989
engineering analysis; originally, a three-dimensional mesh network was planned. But the mutual fit of the
two-dimensional mesh network and the circuit board medium provided high packaging density and allowed
the high-speed signals between the routers to be conveyed on shorter wires.

Sixty-four Mosaic chips were packaged by tape-automated bonding (TAB) in an 8 x 8 array on a circuit
board. These boards allowed the construction of arbitrarily large, two-dimensional arrays of nodes using
stacking connectors. This style of packaging was meant to demonstrate some of the density, scaling, and
testing advantages of mesh-connected systems. Host-interface boards were also used to connect the Mosaic
arrays and workstations.

Applications and Future Trends Charles Seitz determined that the most profitable niche and scaling
track for the multicomputer, a highly scalable and economical MIMD architecture, was the fine-grain
multicomputer. The Mosaic C demonstrated many of the advantages of this architecture, but the major part
of the Mosaic experiment was to explore the programmability and application span of this class of machine.

The Mosaic may be taken as the origin of two scaling tracks: (1) Single-chip nodes are a technologically
attractive point in the design space of multicomputers. Constant-node-size scaling results in single-chip
nodes of increasing memeory size, processing capability, and communication bandwidth in larger systems
than centralized shared-memory multiprocessors. (2) It was also forecasts that constant-node-complexity
scaling would allow a Mosaic 8 x 8 board to be implemented as a single chip, with about 20 times the
performance per node, within 10 years. In this context, see also the discussion in Chapter 13.

A 16K-node machine was constructed at Caltech to explore the programmability and application span
of the Mosaic C architecture for large-scale computing problems. For the loosely coupled computations in
which it excels, a multicomputer can be more economically implemented as a network of high-performance
workstations connected by a high-bandwidth local-area network. In fact, the Mosaic components and
programrning tools were used by a USC Information Science Institute project (led by Danny Cohen, 1992) to
implement a 400-Mbits/s ATOMIC local-area network for this purpose.

Advanced Computer Architecture

S

Three pioneering and landmark scalable multiprocessor systems are discussed in this
section. The Stanford Dash combined several latency-hiding mechanisms. The Kendall
Square Research KSR-1 offered the first commercial attempt to produce a multiprocessor with cache-only
memory. The Tera computer evolved from the HEP/Horizon series developed by Burton Smith. Only the
main architectural features are described below. All three systems were extensions of the traditional von
Neumann model. By far, the Tera system represented the most aggressive attempt to build a multi-threaded
multiprocessor.

9.4.1 The Stanford Dash Multiprocessor

This was an experimental multiprocessor system developed by John Hennessy and coworkers at Stanford
University begimning in 1988. The name Dash is an abbreviation for Directory Architecture for Shared
Memory. The fundamental premise behind Dash was that it is possible to build a scalable high-performance
machine with a single address space, coherent caches, and distributed memories. The directory-based
coherence gave Dash the ease of use of shared-memory architectures, while maintaining the scalability of
message-passing machines.

The Prototype Architecture A high-level organization of the Dash architecture was iltustrated in Fig.
9.1 when we studied the various latency-hiding techniques. The Dash prototype is illustrated in Fig. 9.24.
It incorporated up to 64 MIPS R3000/R3010 microprocessors with 16 clusters of 4 PEs each. The cluster
hardware was modified from Silicon Graphics 4D/340 nodes with new directory and reply controller boards
as depicted in Fig. 9.24a,

The interconnection network among the 16 multiprocessor clusters was a pair of wormhole-routed mesh
networks. The channel width was 16 bits with a 50-ns fall-through time and a 35-ns cycle time. One mesh
network was used 1o request remote memory, and the other was a reply mesh as depicted in Fig. 9.24b, where
the small squares at mesh intersections are the 5 x 5 mesh routers.

The Dash designers claimed scalability for the Dash approach. Although the prototype was limited to
at most 16 clusters (a 4 X 4 mesh), due to the limited physical memory addressability (256 Mbytes) of the
4D/340 system, the system was scalable to support hundreds to thousands of processors.

To use the 4D/340 in the Dash, the Stanford team made minor modifications to the existing system boards
and designed a pair of new boards to support the directory memory and intercluster interface. The main
modification to the existing boards was to add a bus retry signal, to be used when a request required service
from a remote cluster.

The central bus arbiter was modified to accept a mask from the directory. The mask held off a processor’s
retry until the remote request was serviced. This effectively created a split-transaction bus protocol for
requests requiring remote service.

The new directory controller boards contained the directory memory, the intercluster coherence state
machines and buffers, and a local section of the global interconnection network. The directory logic was
split between the two logic boards along the lines of the logic used for outbound and inbound portions of
intercluster transactions.

Scalable, Multithreaded, and Dataflow Architectures

Wormhole routing
120 MB/s/link
50 nsthop

Nodes (clusters})

Two 2 D meshes
{request, response,

NO ss e

N15

il

4 x MIPS R3000| | Processor

{33 MHZ)

Cache (snoopy)

Network
inlerface

Directory
[

[

1

Sncopy bus

| Memory (globat addressed)J

Modified Silicon Graphics Power Station 40/340

(a) The prototype node implementation

" 445
Request Mesh
! I
] Pan r }*}_’
/ f Reply Mesh 7
Node Node
Cluster Cluster
ml r
royll ijﬁ
y
Node Node
Cluster Cluster

(Processor Level w

k Processor cache J

Local Cluster Leved

~
R

Other processor caches
within local cluster

N

Directory Home Leve!

Directory and main memory

L associated with given address

(Remote Cluster Level \

L

Processor caches in
remote clusters

)

(¢) Logic memory hierarchy

.
)

{a} Block diagram of 2 x 2 mesh interconnect

Fig.9.24 The Stanford Dash prototype system {Courtesy of D. Lenqkki et al, Proc. 19th Int. Symp. Comput.
Archiit, Australla, May 1992)

446’“ Advanced Computer Architecture

The mesh networks supported a scalable local and global memory bandwidth. The single-address space
with coherent caches permitted incremental porting or tuning of applications, and exploited temporal and
spatial locality. Other factors contributing to improved performance included mechanisms for reducing and
tolerating latency, and well-designed [/O capabilities.

Dash Memory Hierarchy Dash implemented an invalidation-based cache coherence protocol. A memory
location could be in one of three siates:

» Uncached—not cached by any cluster;
« Shared—in an unmodified state in the caches of one or more clusters; or
= Dirty—modified in a single cache of some cluster.

The directory kept the summary information for each memory block, specifying its state and the clusters
cacheing it. The Dash memory system could be logically broken into four levels of hierarchy, as illustrated
in Fig. 9.25¢.

The first level was the processor cache which was designed to match the processor speed and support
snooping from the bus. It took only one clock to access the processor cache. A request that could not be
serviced by the processor cache was sent to the Jocal cluster. The prototype allowed 30 processor clocks to
access the local cluster. This level included the other processors’ caches within the requesting processor’s
cluster.

Otherwise, the request was sent to the home cluster level. The home level consisted of the cluster that
contained the directory and physical memory for a given memory address. It took 100 processor clocks to
access the directory at the home level. For many accesses (for instance, most private data references), the
local and home cluster were the same, and the hierarchy collapsed to three levels. In general, however, a
request would travel through the interconnection network to the home cluster.

The home cluster could usually satisfy the request immediately, but if the directory entry was in & dirty
state, or in a shared state when the requesting processor requested exclusive access, the fourth level had to
be accessed. The remote cluster level for a memory block consisted of the clusters marked by the directory
as holding a copy of the block. It took 135 processor clocks to access processor caches in remote clusters in
the prototype design.

The Directory Protocol The directory memory relieved the processot caches of snooping on memory
requests by keeping track of which caches held each memory block. In the home node, there was a directory
entry per block frame. Each entry contained one presence bit per processor cache. In addition, a state bit
indicated whether the block was uncached, shared in multiple caches, or held exclusively by one cache (i.e.
whether the block was dirty).

Using the state and presence bits. the memory could tell which caches needed to be invalidated when a
location was written. Likewise, the directory indicated whether the memory copy of the block was up-to-date
or which cache held the most recent copy.

By using the directory memory, a node writing a location could send point-to-point invalidation or update
messages to the processors actually cacheing that block. This is in contrast to the invalidating broadcast
required by the snoopy protocol. The scalability of the Dash depended on this ability to avoid broadcasts.

Another important attribute of a directory-based protocol is that it does not depend on any specific
interconnection network topology. As a result, the designer can readily use any of the low-latency scalable
networks, such as meshes or hypercubes, that were originally developed for message-passing machines.

Scalable, Multithreaded, and Dataflow Architectures ™ 447

90

Example 9.5 Cache coherence protocol using distributed
directories in the Dash multiprocessor (Daniel
Lenoski and John Hennessy et al, 1992.)

Figure 9.25a illustrates the flow of a read request to remote memory with the directory in a dirty remote
state. The read request is forwarded to the owning dirty cluster. The owning cluster sends out two messages
in response to the read. A message containing the data is sent directly to the requesting cluster, and a sharing
writeback request is sent to the home cluster. The sharing writeback request writes the cache block back to
memory and also updates the directory.

Local

1. Read Request

to Home 1. RdEx Request

to Home

| \
2a. RAEx Reply Home
to local
3a. Read Reply "
to local 3. Invalidate
Ack's to local
3b.Sharing Writeback 2b. Invalidation

to Home

to Shared

2. Forward Read
Reguest to Dirty

7

(a) Read of dirty remote cache block {8) Write to shared remote cache block

Fig 9.25 Two eamples of a dirmry-based cache coherence protoco! in 1:he Dash (Coumsy of Lenoski
- and Mnessy,‘l?ﬁ) _ e

This protocol reduces latency by permitting the dirty cluster to respond directly to the requesting cluster.
In addition, this forwarding strategy allows the directory controller to simultaneously process many requests
(i.e. to be multithreaded) without the added complexity of maintaining the state of outstanding requests.
Serialization is reduced to the time of a single intercluster bus transaction. The only resource held while
intercluster messages are being sent is a single entry in the originating cluster’s remote-access cache.

448" N Advanced Compuiter Architecture

Figure 9.25b shows the corresponding sequence for a write operation that requires remote service. The
invalidation-based protocol requires the processor (actually the write buffer) to acquite exclusive ownership
of the cache block before completing the store. Thus, if a write is made to a block that the processor does not
have cached, or only has cached in a shared state, the processor issues a read-exclusive request on the local
bus.

In this case, no other cache holds the block entry dirty in the local cluster, so a RdJEx Reguest (message
1) is sent to the home cluster. As before, a remote-access cache entry is allocated in the local cluster. At the
home cluster, the pseudo-CPU issues the read-exclusive request to the bus. The directory indicates that the
line is in the shared state. This results in the directory controller sending a RdEx Reply (message 2a} to the
local cluster and invalidation requests (Inv-Req, message 2b) to the sharing cluster.

The home cluster owns the block, so it can immediately update the directory to the dirty state, indicating
that the local cluster now holds an exclusive copy of the memory line. The RdEx Reply message is received
in the local cluster by the reply controller, which can then satisfy the read-exclusive request.

To ensure consistency at release points, however the remote-access cache entry is deallocated only when
it receives the number of invalidate acknowledgments (Inv-Ack, message 3) equal to an invalidation count
sent in the original reply message.

The Dash prototype with 64 nodes was rather small in size. If each processor had a five-issue superscalar
operation with a 100-MHz clock, an extended machine with 2K nodes would have the potential to become a
system with | tera operations per second, with higher performance at higher clock rates.

This demands an integrated implementation with lower overhead in the scalable directory structure. A
three-dimensional torus network was considered with 16-bit data paths, a ?0-ns fall-through delay, and a
4-ns cycle time. The access time ratio among the four levels of memory hierarchy was to be approximately
1:5:16:80:120, where 1 corresponds to one processor clock. The larger version of DASH was not implemented,
however, the concept of distributed directory-based cache coherence was validated.

9.4.2 The Kendall Square Research KSR-1

This was the first commercial attempt to build a scalable multiprocessor with cache-only memory architec-
ture (COMA). The Kendall Square Research KSR-1 was a size- and generation-scalable shared-memory
multiprocessor computer. It was formed as a hierarchy of “ring multis™ as depicted in Fig. 9.26.

The KSR-1 Architecture Scalability in the KSR-1 was achieved by connecting 32 processors to form a ring
multi (search engine 0 in Fig. 9.26) operating at 1 Gbyte/s (128 million accesses pet second). Interconnection
bandwidth within a ring scales linearly, since every ring slot has roughly the capacity of a typical crosspoint
switch found in a supercomputer that interconnects eight to sixteen 100-Mbytes/s HIPP! channels.

The K.SR-1 used a two-level hierarchy to interconnect 34 Ring:0s by a top-level Ring:1 (1088 Processors)
and was therefore massive. The ring design supported an arbitrary number of levels, permitting ultras to be
built (Fig. 9.27).

Scalable, Multithreaded, and Dataflow Architectures " 449

Unidirectional

H Search slotted ring
Engine 1 .
L]
- Y
s ~
e ARD:
. < ALLCACHE
P Router and
- Directory
e [] .
g—Di LN B J ase
Search Unidirectional
M Engine 0 slotted ring
(8-32 nodes)
:
L]
e —*DE
/
/ \

"—"

Processor

Fig.9.26 The KSR-1 architecture with a slotted nng for communication (Courtesy of Kendaﬂ Squal‘e
- ‘Research Corporation, 1991):

for this node only

32 MB, 128B line ("subpage™)

20 MHz, 20 MIPS, 64b custom superscalar

450" . Advanced Computer Architecture

Ring: 0

Y
=1
o
[=]
| S Rl DRI

H 1 L 1
i sl I

Responding Ring: 0)
Processor -
s | tocal | | = ‘local 4
Cache] Cache | Cache |
Directory Directory Directory |
request !
————————— 1
]
Local Local Local !
_fesponse Cache Cache oo Cache E Requesting
: Processor
I

| ProcessorJ [Processor l Processor ‘/

Fig. 9.27 Remote cache (memory) access through two levels of communication fings in the KSR-1
(Courtesy of Kendall Square Research Corporation, 1991) '

Each node comprised a primary cache, acting as a 32-Mbyte primary memory, and a 64-bit superscalar
processor with roughly the same performance as an IBM RS/6000 operating at the same clock rate. The
superscalar processors containing 64 floating-point and 32 fixed-point registers of 64 bits were designed for
both scalar and vector operations.

For example, 16 elements could be prefetched at one time. A processor also had a 0.5-Mbyte subcache
supplying 20 million accesses per second to the processor (a computational efficiency of 0.5). A processor
operated at 20 MHz and was fabricated in 1.2-um CMOS.

The processor, without caches, contained 3.9 million transistors on 6 types of 12 custom chips. Three-
quarters of each processor consisted of the search engine responsible for migrating data to and from other
nodes, for maintaining memory coherence throughout the system using distributed directories, and for ring
control.

The ALLCACHE Memory The KSR-1 eliminated the memory hierarchy found in conventional computers
and the corresponding physical memory addressing overhead. Instead, it offered a single-level memory,
called ALLCACHE by KSR designers. This ALLCACHE design represented the confluence of cache and
shared virtual memory concepts that exploit locality required by scalable distributed computing. Each local
cache had a capacity of 32 Mbytes (2% bytes). The global virtual address space had 2% bytes.

Scalgble, Multithreaded, and Datoflow Architectures _— 451

Bell (1992) considered the KSR machine the most likely blueprint for future scalable MPP systems. This
was a revolutionary architecture and thus was mare controversial when it was first introduced in 1991. The
architecture provided size (including 1/0) and generation scalability in that every node was identical, and it
offered an efficient environment for both arbitrary workloads and sequential to parallel processing through a
large hardware-supported address space with an unlimited number of processors.

Programming Model The KSR machine provided a strict sequentially consistent programming model
and dynamtc management of memory through hardware migration and replication of data throughout the
distributed processor memory nodes using its ALLCACHE mechanism.

With sequential consistency, every processor returns the latest value of a written value, and results of an
execution on multiple processors appeat as some interleaving of operations of individual nodes when executed
on a multithreaded machine. With ALLCACHE, an address became a name, and this name automatically
migrated throughout the system and was associated with a processor in a cache-like fashion as needed.

Copies of a given cell were made by the hardware and sent to other nodes to reduce access time. A
processor could prefetch data into a local cache and post-store data for other cells. The hardware was designed
to exploit spatial and temporal locality.

For example, in the SPMD programming model, copies of the program moved dynamically and were
cached in each of the operating nodes’ primary and processor caches. Data such as elements of a matrix
moved to the nodes as required simply by accessing the data, and the processor had instructions to prefetch
data to the processor’s registers. When a processor wrote 1o an address, all ceils were updated and thus
memory coherence was maintained. Data movement occurred in subpages of 128 bytes of the 16K pages.

oY)

Example 9.6 Multi-ring searching with requesting and
responding processors on different Ring:
Os (Courtesy of Kendall Square Research
Corporation, 1991).

Internode communication for remote memory access was achieved through a searching process. When the
requester and responder were in the same Ring:0, the searching was restricted to a single connected Ring:0.
Local cache directories showed what addresses could be found in the connected local cache. Each Ring:0 was
a unidirectional slotted ring for pipelined searching until the destination was reached.

Figure 9.27 illustrates the situation when the requester and responder resided in different Ring:0s. The top
level, Ring:1, consisted entirely of ring routing cells (RRCs), each containing a directory for the Ring:0 to
which it was connected. Each RRC directory on Ring:1 was essentially a duplicate of the RRC directory on
the corresponding Ring:0.

When a packet reached an RRC on Ring:1, it was moved to the next RRC on the ring if the RRC directory
indicated that the requested data was not on the corresponding ring. Otherwise, the packet was routed down
to the RRC on Ring:0. The packet-passing speed of a Ring:0 was 8 million packets per second. Ring:1 could
be configured to handle 8, 16, 32, or 64 million packets per second.

452" . Advanced Computer Architecture

Environment and Performance Every known form of parallelism was supported via the KSR’s Mach-
based operating system. Multiple users could run multiple sessions comprising multiple applications or
multiple processes (each with independent address space), each of which might consist of multiple threads
of control running and simultaneously sharing a common address space. Message passing was supported by
pointer passing in the shared memory to avoid data copying and ephance performance.

The KSR also provided a commercial programming environment for transaction processing that accessed
relational databases in parallel with unlimited scalability as an alternative to multicomputers formed from
multiprocessor mainframes. A 1K-node system provided almost two orders of magnitude more processing
power, primary memory, /O bandwidth, and mass storage capacity than a multiprocessor mainframe available
at that time.

For example, unlike other contemporary candidates, a 1088-node system could be configured with
15.3 terabytes of disk memory, providing 500 times the capacity of its main memory. The 32- and 320-node
systems were designed to deliver over 1000 and 10,000 transactions per second, respectively, giving them
over 100 times the throughput of a multiprocessor mainframe available at the time.

With rapid advances in VLSI and interconnect technologies, the mid-1990s saw a major shakeout in
the supercomputer business. Kendall Square Research, the developers of KSR-1 and its sequel KSR-2
systems, were forced to exit from hardware business during that period. As in the case of other innovative
and pioneering attempts at the development of parailel computer architectures, knowledge gained from the
KSR development was also useful in the design and development of MPP computer systems of subsequent
generations. Our next case study on MPP system will also bring out clearly this important point.

9.4.3 The Tera Multiprocessor System

Multithreaded von Neumann architecture can be traced back to the CDC 6600 manufactured in the mid-
1960s. Multiple functional units in the 6600 CPU could exccute different operations simultancously using
a score-boarding control. The very first multithreaded multiprocessor was the Denelcor HEP designed by
Burion Smith in 1978. The HEP was built with 16 processors driven by a 10-MHz clock, and each processor
could execute 128 threads (called processes in HEP terminology) simultaneously.

The HEP failed to survive due to inadequate software and compiler support. The Tera was very much a
HEP descendant but was implemented with VLSI circuits and packaging technology. A 400-MHz clock was
proposed for use in the Tera system, again with a maximum of 128 threads (i-streams in Tera terminology)
pEr Processor.

In this section, we describe the Tera architecture, its processors and thread state, and the tagged memory/
registers. The unique features of the Tera included not only the high degree of multithreading but also the
explicit-dependence lookahead and the high degree of pipelining in its processor-network-memory operations.
These advanced features were mutually supportive. The first Tera Multithreaded Architecture (MTA) system
was delivered in 1998. '

The Tera Design Goals The Tera architecture was designed with several major goals in mind. First, it
needed to be suitable for very high-speed implementations, i.e. have a short clock period and be scalable to
many processors. A maximum configuration of the first implementation of the architecture (Fig. 9.28a) was
256 processors, 512 memory units, 256 1/0 cache units, 256 /O processors, 4096 interconnection network
nodes, and a clock period of less than 3 ns.

Scatable, Muttithreaded, and Dataflow Architectures " 453

Processors {max 256) 10 Processors (max 256)

3 D Toroidai Mesh {16 x 16 x 16)

Memories {max 512) /0 CACHES (max 256)

(@) The Tera computer system

v / 4

X/

////

a7 i 7
Swarwa
A

X X ol

X —links

i
xq\\h
R

(h\
N
I
N
\
\
N

N
‘%
Y

\\.
N

NN

{b) A sparse 4 x 4 x 4 torus with X-links and Y-links missing on alterate
Z-layers, respectively

Fig.9.28 The Tera muklprucessor a.nd Jts: three—damensmal sparse torus architecture uhown with
4x4x4 conﬁguratlon (Courtesy of Tera Computer Company, 1992)

454 Wil Advanced Computer Architecture

Second, it was important that the architecture be applicable to a wide spectrum of problems. Programs that
do not vectorize well, perhaps because of a preponderance of scalar operations or too frequent conditional
branches, will execute efficiently as long as there is sufficient parallelism to keep the processors busy.
Virtually any parallelism applicable in the total computational workload can be turned into speed, from
operation-level parallelism within program basic blocks to multiuser time and space sharing.

A third goal was ease of compiler implementation. Although the instruction set did have a few unusual
features, they did not pose unduly difficult problems for the code generator. There were no register or
memory addressing constraints and only three addressing modes. Condition code setting was consistent and
orthogonal.

Because the architecture permitted free exchange of spatial and temporal locality for parallelism, a highly
optimizing compiler could improve locality and trade the parallelism thereby saved for more speed. On the
other hand, if there was sufficient parallelism, the compiler could exploit it efficiently.

The Sparse Three-Dimensional Torus The interconnection network was a three-dimensional sparsely
populated torus (Fig. 9.28b) of pipelined packet-switching nodes, each of which was linked to some of its
neighbors. Fach link could transport a packet containing source and destination addresses, an operation, and
64 data bits in both directions simultaneously on every clock tick. Some of the nodes were also linked to
resources, 1.c. processors, data memory units, /O processors, and /O cache units.

Instead of locating the processors on one side of the network and the memories on the other {a “dance hall”
configuration), the resources were distributed more-or-less uniformly throughout the network. This permitted
data to be placed in memory units near the appropriate processor when possible, and otherwise generally
maximized the distance between possibly interfering resources.

The interconnection network of one 256-processor Tera system contained 4096 nodes arranged in a 16 X
16 % 16 toroidal mesh; i.e. the mesh “wrapped around” in all three dimensions. Of the 4096 nodes, 1280 were
attached to the resources comprising 256 cache units and 256 1/O processors. The 2816 remaining nodes did
not have resources attached but still provided message bandwidth.

To increase node performance, some of the links were omitied. If the three directions are named X, y, and
z, then x-links and y-links were omitted on alternate z-layers (Fig. 9.28b). This reduces the node degree from
6 to 4, or from 7 to 5, counting the resource link. In spite of its missing links, the bandwidth of the network
was very large.

Any plane bisecting the network crossed at least 256 links, giving the network a data bisection bandwidth
of one 64-bit data word per processor per tick in each direction. This bandwidth was needed to support
shared-memory addressing in the event that all 256 processors addressed memory on the other side of some
bisecting plane simultaneously.

As the Tera architecture scaled to larger numbers of processors p, the number of network nodes grew as
p3 2 rather than as the plog p associated with the more commonly used multistage networks. To see this, we
first assume that memory latency is fully masked by parallelism only when the number of messages being
routed by the network is at least p x /. where / is the {round-trip) latency. Since messages occupy volume,
the network must have 2 volume proportional to p X I since the speed of light is finite, the volume is also
proportional to / * and therefore / is proportional to pY* rather than log p.

Pipelined Support Each processor in a Tera computer could execute multiple instruction streams (threads)
simultaneously. In the initial implementation, as few as 1 or as many as 128 program counters could be active

Scalable, Multithreaded, and Dataflow Architectures . 455

at once. On every tick of the clock, the processor logic selected a ready-to-execute thread and allowed it to
issue its next instruction. Since instruction interpretation was completely pipelined by the processor and

by the network and memories as well (Fig. 9.29), a new instruction from a different thread could be issued
during each tick without interfering with its predecessors.

When an instruction finished, the thread to which it belonged became ready to execute the next instruction.
As long as there were enough threads in the processor so that the average instruction latency was filled with
instructions from other threads, the processor was fully utilized. Thus, it was only necessary to have enough
threads to hide the expected latency (perhaps 70 ticks on average); once latency was hidden, the processor
would run at peak performance and additional threads would not speed the result.

If a thread were not alicwed to issue its next instruetion until the previous instruction completed, then
approximately 70 different threads would be required on each processor to hide the expected latency. The
lookahead described later allowed threads to issue multiple instructions in parallel, thereby reducing the
number of threads needed to achieve peak performance.

As seen in Fig. 9.29, three operations could be executed simultaneously per instruction per processor. The
M:pipeline was for memory-access operations, the A-pipeline for arithmetic operations, and the C-pipeline
for control or arithmetic operations. The instructions were 64 bits wide. I more than one operation in an
instruction specified the same register or setting of condition codes, the priority was M > A4 > C.

/ issue Instruction
pool fetch
—_—
o B M A C
T .2
P
7 — ~ 1
23 I 55 l "
=] Ea o &
=0 g o 24a
£ 5 'ua,,
AN N =
retry .
(pool) £ 2
J— z 06;
(interconnection network)
-—
F 1 T T
memory internai pipeline /
] ! 1]

Fig. 9.29 Pipelined processor-network-memory structure (Courtesy of Tera Computer Company, 1992)

456" 0. Advanced Computer Architecture

It was estimated that a peak speed of 1G operations per second could be achieved per processor if driven
by a 333-MHz clock. However, a particular thread would not exceed about 100M operations per second
because of interleaved execution. The processor pipeline was rather deep, about 70 ticks, as compared with
8 ticks in the earlier HEP pipeline.

Thread State and Management Figure 9.30 shows that each thread had the following state associated
with it:

* One 64-bit stream status word (SSW);

+ Thirty-two 64-bit general-purpose registers (R0-R31);

» Eight 64-bit target registers (T0-T7).

L]
P SSW
| [[rc
-
ssw | | e |HEH
T0 . 1
. -
. -
7 =
RO 84 b L]
[]
» —1
L) - P []
R31 =l
[— 128 Copies

Stream Status Word (SSW)

« 32 bit PC (Program Counter)

« Modes (e.g. rounding, lookahead disable)

« Trap disable mask (e.g. data alignment, overflow)
« Condition codes (last four emitted)

No synchronization bits on R0-R31

Targel Registers (TO-T7) look like SSWs

Fig.9.30 The thread management scheme used in the Tera computer {Courtesy of Tera Computer
Company, 1992))

Context switching was so rapid that the processor had no time to swap the processor-resident thread state.
Instead, it had 128 of everything, i.e. 128 SSWs, 4096 general purpose registers, and 1024 target registers. It
is appropriate to compare these registers in both quantity and function to vector registers or words of caches
in other architectures. In all three cases, the objective is to improve locality and avoid reloading data.

Program addresses were 32 bits in length. Each thread’s current program counter (PC) was located in
the lower half of its SSW. The upper half described various modes (e.g. floating-point rounding, lookahead
disable), the trap disable mask (¢.g. data alignment, floating overflow), and the four most recently generated
condition codes.

Scalable, Multithreaded, and Dataflow Architectures . 457

Most operations had a _TEST variant which emitted a condition code; and branch operations could
examine any subset of the last four condition codes emitted and branch appropriately. Also associated with
each thread were thirty-two 64-bit general-purpose registers. Register RO was special in that it read as 0 and
output to it was discarded. Otherwise, all general-purpose registers were identical.

The target registers were used as branch targets. The format of the target registers was identical to that of
the SSW, though most control transfer operations used only the low 32 bits to determine a new PC. Separating
the determination of the branch target address from the decision to branch allowed the hardware to prefetch
instructions at the branch targets, thus avoiding delay when the branch decision was made. Using target
registers also made branch operations smaller, resulting in tighter loops. There were also skip operations
which obviated the need to set targets for short forward branches.

One target register (T0) pointed to the trap handler which was nominally an unprivileged program. When
a trap occurred, the effect was as if a coroutine call to a TO had been executed. This made trap handling
extremely lightweight and independent of the operating system. Trap handlers could be changed by the user
to achieve specific trap capabilities and priorities without loss of efficiency.

Explicit-Dependence Lookahead If there were enough threads executing on each processor to hide the
pipeline latency (about 70 ticks), then the machine would run at peak performance. However, if cach thread
could execute some of its instructions in parallel (e.g. two successive loads), then fewer threads and parallel
activities would be required to achieve peak performance.

The obvious solution was to introduce instruction lookahead; the difficulty was that the traditional
register reservation approach requires far too much scoreboard bandwidth in this kind of architecture. Either
multithreading or herizontal instruction alone would preclude scoreboarding.

The Tera architecture used a new technique called explicit-dependence lookahead. Each instruction
contained a 3-bit lookahead field that explicitly specified how many instructions from this thread would be
issued before encountering an instruction that depended on the current one. Since seven was the maximum
possible lookahead value, at most 8 instructions and 24 operations could be concurrently executing from each
thread.

A thread was ready to issue a new instruction when ail instructions with lookahead values referring to the
new instruction had completed. Thus, if each thread maintained a lookahead of seven, then nine threads were
needed to hide 72 ticks of latency.

Lookahead across one or more branch operations was handled by specifying the minimum of all distances
involved. The variant branch operations JUMP_GFTEN and JUMP_SELDOM, for high-and low-probability
branches, respectively, facilitated optimization by providing a barrier to lookahead alon g the less likely path.
There were also SKIP_OFTEN and SKIP_SELDOM operations. The overall approach was conceptually sim-
ilar to exposed-pipeline lookahead except that the quanta were instructions instead of ticks.

Advantages and Drawbacks The Tera used multiple contexts to hide latency. The machine performed a
context switch every clock cycle. Both pipeline latency and memory latency were hidden in the HEP/Tera
approach. The major focus was on latency tolerance rather than latency reduction.

With 128 contexts per processor, a large number (2K) of registers must be shared finely between threads.
The thread creation must be very cheap (a few clock cycles). Tagged memory and registers with full/empty
bits were used for synchronization. As long as there was plenty of parallelism in user programs to hide
latency and plenty of compiler support, the performance was potentially very high.

458 il Advanced Computer Architecture

However, these Tera advantages were embedded in a number of potential drawbacks. The performance
must be bad for limited parallelism, such as guaranteed low single-context performance. A large number of
contexts {threads) demanded lots of registers and other hardware resources which in turn implied higher cost
and complexity. Finally, the limited focus on latency reduction and cacheing entailed lots of slack parallelism
to hide latency as well as lots of memory bandwidth; both required a higher cost for building the machine.

In the year 1996, the independent company Cray Research, Inc. founded by Seymour Cray merged with the
high-performance graphics workstation producer Silicon Graphics, Inc. (SGI); Cray Research then became a
business division of SGI. In the year 2000, Tera Computer Company, originators and developers of the Tera
MTA massively parallel system which we have studied in this section, took over Cray Research. The merged
company was named Cray, Inc., and it is in active operation today (see www.cray.com). Cray has continued
with the development of the MTA architecture, as we shall review in Chapter 13.

DATAFLOW AND HYBRID ARCHITECTURES -~

Multithreaded architectures can in theory be designed with a pure dataflow approach or with a
hybrid approach combining von Neumann and data-driven mechanisms. In this final section,
we briefly review the historical development of dataflow computers. Then we consider the design of the ETL/
EM-4 in Japan and the prototype design of the MIT/Motorola *T project.

9.5.1 The Evolution of Dataflow Computers

As introduced in Section 2.3, dataflow computers have the potential for exploiting all the parallelism available
in a program. Since execution is driven only by the availability of operands at the inputs to the functional
units, there is no need for a program counter in this architecture, and its parallelism is limited only by the
actual data dependences in the application program. While the dataflow concept offers the potential of high
performance, the performance of an actual dataflow implementation can be restricted by a limited number
of functional units, limited memory bandwidth, and the need to associatively match pending operations with
available functional units.

Arvind and Iannucei (1987) identified memory latency and synchronization overhead as two fundamental
issues in multiprocessing. Scalable multiprocessors must address the loss in processor efficiency in these cases.
Using various latency-hiding mechanisms and multiple contexts per processor can make the conventional
von Neumann architecture relatively expensive to implement, and only certain types of parallelism can be
exploited efficiently.

HEP/Tera computers offered an evolutionary step beyond the von Neumann architectures. Dataflow
architectures represent a radical alternative to von Neumann architectures because they use dataflow graphs
as their machine languages. Dataflow graphs, as opposed to conventional machine languages, specify only
a partial order for the execution of instructions and thus provide opportunities for parallel and pipelined
execution at the level of individual instructions.

Dataflow Graphs We have scen a dataflow graph in Fig. 2.13. Dataflow graphs can be used as a machine
language in dataflow computers. Another example of a dataflow graph (Fig. 9.31a) is given below.

Scalable, Multithreaded, and Dataflow Architectures " 450

1 *
| Dataflow graphs as
2 a machine language
! .
2 / 3: * \‘ \"
MIT Tagged Token Manchester
I Dataflow Architecture Dataflow
1 24 .)
| } M
ETL Sigma-1
4 - 5 ! 6 *
L l 720 Explicit Token
1 Stare Machines
| o+ 8 J % N\ ™
I MIT/Motorola ETLEM+4
Menscon
9 - P-RISC: “RISC-ified” datafiow
I hNg
cos X \q
MITMoatorola T
{a) Dataflow graph for computing {b) Evolution tree of dynamic dataflow machines (Courtesy
cos x (Courtesy of Arvind) of R. Nikhif)

1)

This datafiow graph shows how to obtain an approximation of cosx by the following power series
computation; :

Example 9.7 The dataflow graph for the calculation of
cosx (Arvind, 1991).

2 4 6 2 4 6
cosx~l-—+2 L - 2 X X (9.6)
2 4 e 2 24 720

The corresponding dataflow graph consists of nine operators (actors or nodes). The edges in the graph
interconnect the operator nodes. The successive powers of x are obtained by repeated multiplications. The
constants (divisors) are fed into the nodes directly. All intermediate results are forwarded among the nodes.

460" W, Advanced Computer Architecture

Static versus Dynamic Dataflow Static dataflow compulers simply disallow more than one token to
reside on any one arc, which is enforced by the firing rule: A node is enabled as soon as tokens are present
on all input arcs and there is no token on any of its output arcs. Jack Dennis proposed the very first static
dataflow computer in 1974.

The static firing rule is difficult to implement in hardware. Special feedback acknowledge signals are
needed to secure the correct token passing between producing nodes and consuming nodes. Also, the static
rule makes it very inefficient to process arrays of data. The number of acknowledge signals can grow too fast
to be supperted by hardware.

However, static dataflow inspired the development of dynamic datafiow computers, which were researched
vigorously at MIT and in Japan. Ina dynamic architecture, each data token is tagged with a context descriptor,
called a tagged token. The firing rule of tagged-token dataflow is changed to: A node is enabled as soon as
tokens with identical tags are present at each of its input arcs.

With tagged tokens, tag matching becomes necessary. Special hardware mechanisms are needed to achieve
this. In the rest of this section, we discuss only dynamic dataflow computers. Arvind of MIT pioneered the
development of tagged-token architecture for dynamic dataflow computers.

Although data dependence does exist in dataflow graphs, it does not force unnecessary sequentialization,
and dataflow computers schedule instructions according to the availability of the operands. Conceptually,
“token”-carrying values fiow along the edges of the graph. Values or tokens may be memory locations.

Each instruction waits for tokens on all inputs, consumes input tokens, computes output values based on
input values, and produces tokens on outputs. No further restriction on instruction ordering is imposed. No
side effects are produced with the execution of instructions in a dataflow computer. Both dataflow graphs and
machines implement only functional languages.

Pure Dataflow Machines Figure 9.31b shows the evolution of dataflow computers. The MIT tagged-
token dataflow architecture (TTDA) (Arvind et al, 1983), the Manchester Dataflow Computer {(Gurd and
Watson, 1982), and the ETL Sigma-1 (Hiraki and Shimada, 1987) were all pure dataflow computers. The
TTDA was simulated but never built. The Manchester machine was actually built and became operational in
mid-1982. It operated asynchronously using a separate clock for each processing element with a performance
comparable to that of the VAX/780.

The ETL Sigma-} was developed at the Electrotechnical Laboratory, Tsukuba, Japan. It consisted of 128
PEs fully synchronous with a 10-MHz clock. It implemented the I-structure memory proposed by Arvind.
The full configuration became operational in 1987 and achieved a 170-Mflops performance. The major
problem in using the Sigma-1 was lack of high-level language for users.

Explicit Token Store Machines These were successors to the pure dataflow machines. The basic idea is to
eliminate associative token matching. The waiting token memory is directly addressed, with the use of full/
empty bits. This idea was used in the MIT/Motorola Monsoon (Papadopoulos and Culler, 1988) and in the
ETL EM-4 system (Sakai et al, 1989).

Multithreading was supported in Monsoon using multiple register sets. Thread-based programming was

conceptually introduced in Monsoon. The maximum configuration built consisted of eight processors and
eight I-structure memery modules using an 8 X 8 crossbar network. It became operational in 1991.

Scalable, Multithreaded, and Dataflow Architectures - 45

EM-4 was an extension of the Sigrna-1. It was designed for 1024 nodes, but only ait 80-node prototype
became operational in 1990. The prototype achieved 815 MIPS in an 80 x 80 matrix multiplication benchmark.
We will study the details of EM-4 in Section 9.5.2. '

Hybrid and Unified Architectures These are architectures combining positive features from the von
Neumann and dataflow architectures. The best research examples include the MIT P-RISC (Nikhil and
Arvind, 1988), the IBM Empire (lannucci et al., 1991), and the MIT/Motorola *T (Nikhil, Papadopoulos,
Arvind, and Greiner, 1991).

P-RISC was a “RISC-ified” dataflow architecture. It allowed tighter encodings of the dataflow graphs
and produced longer threads for better performance. This was achieved by splitting “complex” dataflow
instructions into separate “simple” component instructions that could be composed by the compiler. It
used traditional instruction sequencing. It performed all intraprocessor communication via memory and
implemented “joins” explicitly using memory locations.

P-RISC replaced some of the dataflow synchronization with conventional program counter-based
synchronization. IBM Empire was a von Neumann/dataflow hybrid architecture under development at IBM
based on the thesis of Iannucci (1988). The *T was a latter effort at MIT joining both the dataflow and von
Neumann ideas, to be discussed in Section 9.5.3.

9.5.2 ETL/EM-4in Japan

EM-4 had the overall system organization as shown in Fig. 9.32a. Each EMC-R node was a single-chip
processor without floating-point hardware but including a switch of the network. Each node played the
role of I-structure memory and had 1.31 Mbytes of static RAM. An Omega network was used to provide
interconnections among the nodes.

The Node Architecture The internal design of the processor chip and of the node memory are shown
m Fig. 9.32b. The processor chip communicated with the network through a 3 x 3 crossbar switch unit.
The processor and its memory were interfaced with a memory control unit. The memory was used to hold
programs (template segments) as well as tokens (operand segments, heaps, or frames) waiting to be fetched.

The processor consisted of six component units. The input buffer was used as a token store with a capacity
of 32 words. The feich-match unit fetched tokens from the memory and performed tag-matching operations
among the tokens fetched in. Instructions were directly fetched from the memory through the memory
controller.

The heart of the processor was the execution unit, which fetched instructic ns until the end of a thread.
Instructions with matching tokens were executed. Instructions could emit tokens or write to registers.
Instructions were fetched continually using traditional sequencing (PC + 1 or branch) until a “stop” flag was
raised to indicate the end of a thread. Then another pair of tokens was accepted. Each instruction in a thread
specified the two sources for the next instruction in the thread.

reside o a
. .. omany one are whilr . flow Static duton... Adanced Commirmn.. »
ire
[y
t
462" Advanced Computer Architecture ;
Node Node
Mamory Memory
o009
EMC-R EMC-R
Processor Processor
Omega Network

(a) Global organization

l Memory
Fetch-Match
Unit
Ovarflow
Input Program
Buffer Execution (Template
Unit Unit segments}
{Token Waiting
Memory
queue) Instruction Coantrol (oTOKG:Sd
Foteh Unit s pr?;a:ts
(til end Bgi . s
of thread) frames)
Heap
Register Execute and
File Emit Tokens
Switching
Unit Present bits
(3 % 3 crossbar)

Network

(b) The EMC-R processor design

Fig.9.32 The ETL EM-4 dataflow architecture (Courtesy of Sakai, Yamagucht et al, Electrotechnical
Laboratory, Tsukuba, Japan, 1991)

